
The XModeler
ML

A language engineering, modeling and execution

environment

Ulrich Frank1[0000−0002−8057−1836] and Tony Clark2[0000−0003−3167−0739]

1 University of Duisburg-Essen, Germany
ulrich.frank@uni-due.de

2 Aston University, UK
tony.clark@aston.ac.uk

Abstract. This paper presents the versatile language engineering, mod-
eling, and execution environment XModelerML. Starting with the moti-
vation for developing the tool and a brief historical background, the
underlying language engineering technology is presented. Subsequently,
we give an overview of core concepts of the (meta) modeling language
FMMLx that is used for creating models and DSMLs with the XModelerML.
Finally, an outline of the components of the XModelerML gives an im-
pression of how to use the tool.

Keywords: multi-level modeling · abstraction · DSML development ·

model-based development.

1 Introduction

The development of languages, models, and corresponding tools and applications
is a demanding undertaking. It often requires expertise and resources that are
beyond many organizations capabilities. Reuse is a promising approach to reduce
the corresponding e�ort without the need to compromise on quality. However,
reuse is not easy to achieve, since languages, models and applications in general
often have to satisfy speci�c requirements of particular use cases. Apart from
reusing existing components, the only way to achieve reuse is to aim at powerful
abstractions, which capture commonalities of a wide range of artefacts and,
at the same time, support convenient and safe adaptation to speci�c needs.
There are various approaches in software engineering and conceptual modeling
that pursue this objective. The abstraction they allow for often depends on the
(programming) language they make use of or they were designed for. This is
especially the case for the fact that most (object-oriented) languages allow for
one classi�cation level only. As a consequence, more abstract knowledge about
a class of systems or a domain that would require higher levels of classi�cation
can hardly be expressed.

The tool we present in this paper, the XModelerML, is based on a re�ex-
ive language architecture that overcomes this limitation. It provides powerful

2 Ulrich Frank and Tony Clark

abstractions over languages, models and tools that do not only support the ef-
�cient realization of custom languages and tools, but also enable new system
architectures that promote reuse, adaptability, integration and user empower-
ment. The development of the XModelerMLstarted in 2010 within the project
�Language Engineering for Multi-Level Modeling� (LE4MM) as a collaboration
between the universities Duisburg-Essen and Middlesex, London [8]. The foun-
dational language model and the corresponding tool, the XModeler, had been
developed earlier [3], [4].

The design of the XModelerMLwas motivated by objectives, which to achieve
was hardly possible with existing language technologies. The presentation starts
with a discussion of these objectives. We will then give an overview of the foun-
dational architecture and present essential bene�ts from using the XModelerML.

2 Motivation

The main reason for choosing the language technology implemented in the
XModeler was frustration with prevalent language architectures. Previously the
enterprise modeling group at the University of Koblenz and later at the Uni-
versity of Duisburg-Essen had developed a range of languages for enterprise
modeling. To foster the use of these languages for analysis and design purposes,
various corresponding modeling tools had been developed.

At �rst, Smalltalk was chosen to this end [6]. With its clean and conse-
quent object-oriented foundation and its pathbreaking development environment
it proved to serve as a powerful instrument for the implementation of modeling
tools. In addition to classes, Smalltalk provides metaclasses. In principal, these
are useful since they allow for additional abstraction. However, the abstrac-
tion enabled by metaclasses in Smalltalk is limited: by default, every class in
Smalltalk has one metaclass which in turn has exactly one instance only. As a
consequence, it is not possible to de�ne metaclasses of a range of classes � or
even of metaclasses. This limitation is a serious obstacle to the development and
use of modeling tools (see below). Later, EMF, Eclipse amd Java were used for
a further generation of tools [10], mainly for the reason that they provide for
platform independence and o�er extensive libraries, which promote development
productivity. Apart from that, Java represented a step backwards compared to
Smalltalk.

The frustration accumulated through the experience with Java and even with
Smalltalk was caused primarily by the following limitations. For an extensive
analysis of limitations inherent to the traditional language paradigm see [7].

Lack of expressiveness: It is a pivotal guideline, both for the design of mod-
eling languages and for conceptual modeling in general to express all knowledge
one has about a domain at the highest level of abstraction in order to avoid re-
dundancy. It happens frequently that this is not possible with (meta-) modeling
languages based on the MOF. The example in Fig. 1 illustrates this limita-
tion. We know that a master thesis is a kind of document. At �rst, it seems
plausible to regard the class MasterThesis as being specialized from the class

The XModelerML 3

Document. However, the attribute maxPages in Document is not to be inherited
to MasterThesis. Instead, it should be instantiated there to indicate the max-
imum numbers of pages de�ned for master theses. Also, we know of documents
that particular instances have a page count. Therefore, one should represent
this knowledge with the speci�cation of the class Document. However, it is not
possible to de�ne that it is to be instantiated only at level 0.

Document

created: Date
pages: Integer
maxPages: Integer

Document

created: Date
pages: Integer
maxPages: Integer

MasterThesis

created: Date
pages: Integer
submitted: Date

MasterThesis

created: Date
pages: Integer
submitted: Date

mt1: MasterThesis

created = 05-26-2020
pages = 76
submitted = 05-27-2020

mt1: MasterThesis

created = 05-26-2020
pages = 76
submitted = 05-27-2020

?

to be
instantiated
directly

maxPages = 80 –
where to specify?

inherited

extended

to be
instantiated
on M0

noOfModels() : Integer

PeripheralDevice

output: Boolean
input: Boolean
salesPrice: Money
partSalesPrice: Money
serialNo: String

noOfModels() : Integer

PeripheralDevice

output: Boolean
input: Boolean
salesPrice: Money
partSalesPrice: Money
serialNo: String

Printer

salesPrice: Money
partSalesPrice: Money
serialNo: Money
pagePerMinute: Integer
resolution: Integer

Printer

salesPrice: Money
partSalesPrice: Money
serialNo: Money
pagePerMinute: Integer
resolution: Integer

CPL-844

partSalesPrice: String
serialNo: String

CPL-844

partSalesPrice: String
serialNo: String

?

?

Where to store
values for input
and output ..

.. and for
resolution and
pagePerMinute?

How to express
that, e.g.,
partSalesPrice is to
be instantiated only
on M0?

How to run the
operation
noOfModels in a
(meta) class?

Fig. 1. Illustration of limited expressiveness in traditional paradigm

Limitations of DSML design: This is a special case of the previous limita-
tion. It occurs frequently with the design of modeling languages and is especially
annoying, if the models created with a modeling language should be further in-
stantiated. To this end, a process modeling language should include the knowl-
edge we have about speci�c properties of process instances. For example, every
process instance has a start time and a termination time. Aparently, this obvious
knowledge cannot be expressed with a metaclass that is used for the speci�cation
of a modeling language.

Pitfalls of model-driven development : Model-driven software development is
an appealing idea. It advocates to focus on modeling and do without coding
as much as possible. Finally, when the models are complete, code is generated.
While this seems like a convincing approach to software development, it su�ers
from a serious drawback: during its lifetime, a software system has to be adapted
to new requirements. No matter whether changes are applied to the code �
which will often be the case � or to the corresponding models, in any case both
representations need to be synchronized, if one does not want to give up on the
bene�ts of having an up to date model.

The example in Fig. 2 makes clear why code generation is necessary in the
traditional language paradigm. While the concepts represented by a model will
usually be at M1 or higher, modeling tools implemented with traditional lan-

4 Ulrich Frank and Tony Clark

guages do not allow for representing them there. Instead, they have to be located
as objects as M0.

Program instance

name: String
isAbstract: Boolean

Class

name: String
type: String

Attribute

yearsOfAge() : Integer

firstName: String
lastName: String
custID: String
dateOfBirth: Date

Customer

includes

specializedFrom

0,*

0,1

0,* 1,1

class Customer

{

 String firstName;

 String lastName;

 Date dateOfBirth;

 public int yearsOfAge()

....

}

generate

Modeling Environment Programming Environment

M1

M0
M1

M0

represented as object on M0

represents class on M1

M2

M1

conceptual level

actual implementation levelM

M

Fig. 2. The reason for software generation

Dissatisfactory integration of models and software: This limitation is directly
related to the previous one. To empower users of a complex application system
such as an ERP system, it would be useful to tightly integrate the system with
the conceptual models, it is based on. In an ideal case, users could then navigate
from the application they use to the corresponding models. By changing the
models they could modify the software. This vision of �self-referential enterprise
systems� [9] evolved already some time ago. However, its implementation failed
due to limitations of prevalent programming languages that require separate
representations of model and code.

The development of the XModelerML was mainly motivated by these obsta-
cles imposed by traditional (meta) modeling and programming languages. To
overcome these obstacles a language architecture was required that allows for
multiple, better: an arbitrary number of classi�cations, and that, thus, allows
for a common representation of models and code. The language architecture that
builds on XCore and XOCL and that is provided by the XModeler (see below)
proved to serve as a powerful foundation for achieving this objective.

3 Foundations

XModeler has been designed for language engineering, both in terms of model-
based languages and text-based languages, and their associated tools. To achieve
this it is based on XCore, which is a small meta-circular meta model that is shown

The XModelerML 5

in �gure 3. For a simpli�ed representation of XCore see [5]. XCore runs against
a virtual machine written in Java. The two key principles of XCore are that
it is both self-describing and extensible; it achieves that in the following ways:
uniformity everything is an object with a standard interface that allows the
object's representation, type and behaviour to be inspected and modi�ed; types
are both objects and extensible so that new types-of-types can be de�ned;moni-

toring updates to objects can be monitored by daemons which allows XModeler
to monitor its own updates and to take appropriate action; language support

in the form of grammars that allow new text-based language features to be
incrementally added to the existing language; meta-object-protocol which al-
lows the object-oriented language interface for XCore (object creation, operation
invocation, slot-access and update) to be extended at the type level.

Fig. 3. XCore

6 Ulrich Frank and Tony Clark

Fig. 4. A Simple Executable Model in XEditor and Associated Diagram

The XOCL language is implemented as a concrete language on top of XCore.
Most of XModeler is written in XOCL. It is also suitable for creating executable
models of systems. XEditor is a tool that is written for working with text-based
languages that are implemented in XCore. A typical executable model written
in XOCL and its associated diagram is shown in �gure 4.

4 Meta-language and components

The XModelerML features a multi-level (meta) modeling language, the FMMLx [5].
Among other things, it allows for an arbitrary number of classi�cation levels and
deferred instantiation (a property de�ned at level n can be instantiated at lev-
els < n-1). Core concepts of the FMMLx and its default concrete syntax are
shown in Fig. 5. Since the FMMLx is based on the golden braid architecture
featured by XCore, it does not require distinguishing between a �linguistic� and
an �ontological� meta model other approaches are based on [2], [1].

The XModelerML allows to overcome the obstacles imposed by traditional
modeling and programming languages. It o�ers clearly more expressiveness by
allowing for an arbitrary number of classi�cation levels and for deferred instan-
tiation (see, e.g., the attribute salesPrice of the class Product at level 3 in in
Fig. 5). Last but not least, models created with the FMMLx are fully executable.

The XModelerML 7

The common distinction between models and code does not exist anymore, since
both share the same representation.

It also enables a more e�cient speci�cation of DSMLs. The speci�cation of
a DSML within the XModelerML is illustrated in a screencast provided at the
project webpages (www.le4mm.org/xmodelerml). DSMLs can be de�ned at any
level of classi�cation. For example, a DSML that represents general character-
istics of products could be de�ned at level 4, and then used to specify a more
speci�c DSML to model vehicles, which would start at level 3, but also comprise
more speci�c concepts such as vehicle models at level 2. As a consequence, the
distinction between modeling language, model and instantiations of models is
overcome, since a model designed with the FMMLx may include classes at dif-
ferent classi�cation levels. This corresponds directly to the use of concepts in
natural language, where a sentence may refer to concepts at di�erent levels of
abstraction as well as to particular exemplars. For language designers, modelers
and model users, this architecture creates obvious advantages. Language design-
ers are no longer forced to develop new languages from scratch using generic
concepts such as Class or Attribute.

Instead, they can use a more general, yet domain-speci�c language, to de�ne
a more speci�c one. Modelers can navigate to the language they use (it can
be part of the same model) at runtime. They can also instantiate a model at
runtime, which may give valuable feedback for their design decisions. Finally, this
architecture gives users of an application system the opportunity to navigate to
the conceptual model of the system they work with at runtime, and change the
model (if they are authorized to do so). By changing the model, they would
directly change the system.

Level

Delegation
Instantiation Level

Slot Value

Constraint Report

Constraint
Operation Value

Palette

link

Specialization

View Filters

Derived Attribute

navigability

Reading direction

Fig. 5. Illustration of concepts provided by the FMMLx

8 Ulrich Frank and Tony Clark

With the XModelerML, the notorious synchronization of models and code
is widely obsolete. All classes speci�ed with the FMMLx are speci�ed and im-
plemented (!) at the level where they conceptually belong. Hence, they can be
instantiated within a model editor without the need for code generation.

The XModelerML consists of various components that allow accessing, ma-
nipulating and executing a model from di�erent perspectives. With each model
a corresponding diagram editor is generated. In addition to allow for creating
and modifying models, it also allows for executing models. If the execution of a
model results in changes of the diagram, these are directly shown in the editor.

Developers that prefer textual representations over graphical ones may use
an instance of the model browser. It can operate on the same model that is also
used by an instance of the diagram editor at the same time. In case the default
notation of the FMMLx (see Fig. 5) is not satisfactory, the concrete syntax

editor serves the speci�cation of notations by arranging pre-de�ned SVGs and
text elements. After a notation has been de�ned, it can directly be used by the
diagram editor.

instance browser

control center

model browser

console

diagram editor

Fig. 6. Components of the XModelerML

The workspace allows to interact with and manipulate model elements, e.g.
for testing purposes, using a command line editor. Two components serve the
realization of application style GUIs to interact with models. An object browser

can be generated for every class in a model. It is composed of widgets such as text
or list boxes that serve the presentation of instances of the selected class. The
GUIs created by the object browser are restricted to objects of one class and lack
a user-friendly layout of widgets. The GUI builder overcomes this restriction. It
transparently sends a model to an external GUI builder, which allows to modify

The XModelerML 9

a generated GUI. After the GUI was redesigned, it is transparently sent back
to the XModelerML, where it can be used immediately to interact with the
corresonding model.

Fig. 6 shows examples of the diagram editor, the model browser, the workspace
and the object browser. It also shows the control center, which, among other
things, serves to load models, to start diagram editors or access the workspace.

The project webpages at www.le4mm.org o�er a wide range of resources on
the XModelerML, including publications, screencasts and downloads of the latest
build as well as example models. Multi-level modeling represents a new language
paradigm. As a consequence, using the FMMLx may be perceived as demanding
at �rst. Therefore, it will often be a good idea to start with using the FMMLx as
a kind of UML class diagram editor. One would then create a UML class diagram
which could be directly instantiated, and executed, within the diagram editor
(see screencast at www.le4mm.org/xmodelerml/#UML-pp). Subsequently, one
could continue with creating a �rst multi-level model to then subsequently raise
the level of abstraction (screencast at www.le4mm.org/xmodelerml).

5 Conclusions and future work

Research on multi-level modeling has resulted in various languages and tools,
e.g., [14, 13, 2, 11]. To the best of our knowledge, the XModelerML is the only
multi-level modeling environment that allows for the execution of models at all
levels of classi�cation. A more detailed comparison of the XModelerMLwith other
tools would go beyond the scope of this paper. For an elaborate comparison with
the LML and Melanee see [12].

In conjunction with the language engineering facitilities provided by XMod-
eler and XOCL, it enables a powerful foundation not only for the development
of modeling languages and model editors, but also for a new generation of self-
re�exive application systems. While still in the state of a research prototype, we
believe the XModelerML allows to experience the bene�ts of multi-level modeling
and software development in a fairly convenient way.

At the same time, multi-level modeling is a research subject that o�ers attrac-
tive perspectives. These include the development of hierarchies of DSMLs where
higher level DSMLs promise attractive economies of scale where more speci�c
DSMLs serve to address particular needs [7]. The fact that the XModelerML al-
lows for executing models also enables attractive options for providing end-users
with tools to develop or modify small applications that go clearly beyond the
potential of current �low-code� environments. Furthermore, the technology un-
derneath the XModelerML is especially suited for the design and implementation
of �digital twins�. To manage digital twins, it is not su�cient to model properties
of their types. Furthermore, it is important to account for the state of partic-
uar instances, too. That requires to also to represent knowledge about speci�c
characteristics of instances and to manage them during execution. With tra-
ditional modeling and programming languages this is hardly possible without

10 Ulrich Frank and Tony Clark

extensive workarounds. In contrast, multi-level language architectures provide
the concepts for a straightforward implementation of digital twins.

References

1. Atkinson, C., Kennel, B., Goÿ, B.: The level-agnostic modeling language. In: Mal-
loy, B., Staab, S., van den Brand, M. (eds.) Software Language Engineering. Lec-
ture Notes in Computer Science, vol. 6563, pp. 266�275. Springer Berlin Heidelberg
(2011)

2. Atkinson, C., Kühne, T.: Reducing accidental complexity in domain models. Soft-
ware & Systems Modeling 7(3), 345�359 (2008)

3. Clark, T., Sammut, P., Willans, J.: Applied Metamodelling: A Foundation for
Language Driven Development. Ceteva, 2 edn. (2008)

4. Clark, T., Sammut, P., Willans, J.S.: Super-languages: Developing languages
and applications with XMF (second edition). CoRR abs/1506.03363 (2015),
http://arxiv.org/abs/1506.03363

5. Frank, U.: The Flexible Multi-Level Modelling and Execution Language
(FMMLx). ICB Research Report, No. 66, University of Duisburg-Essen, 2018

6. Frank, U.: Multiperspektivische Unternehmensmodellierung: Theoretischer Hinter-
grund und Entwurf einer objektorientierten Entwicklungsumgebung. Oldenbourg,
München (1994)

7. Frank, U.: Multi-Level Modeling: Cornerstones of a Rationale. Software and Sys-
tems Modeling 21, 451�480 (2022)

8. Frank, U., Clark, T.: Language Engineering for Multi-Level Modeling (LE4MM): A
Long-Term Project to Promote the Integrated Development of Languages, Models
and Code. In: Font, J., Arcega, L., Reyes-Román, J.F., Giachetti, G. (eds.) Pro-
ceedings of the Research Projects Exhibition at the 35th International Conference
on Advanced Information Systems Engineering (CAiSE 2023), pp. 97�104. CEUR
(2023)

9. Frank, U., Strecker, S.: Beyond ERP Systems: An Outline of Self-Referential En-
terprise Systems, No. 31, University of Duisburg-Essen, 2009

10. Gulden, J., Frank, U.: MEMOCenterNG � A full-featured modeling environment
for organisation modeling and model-driven software development. In: Proceedings
of the 2nd International Workshop on Future Trends of Model-Driven Development
(FTMDD 2010) (2010)

11. Jeusfeld, M.A., Neumayr, B.: DeepTelos: Multi-level Modeling with Most General
Instances. In: Comyn-Wattiau, I., Tanaka, K., Song, I.Y., Yamamoto, S., Saeki, M.
(eds.) Proceedings of the 35th International Conference on Conceptual Modeling
(ER 2016). pp. 198�211. Springer, Cham (2016)

12. Lange, A., Frank, U., Atkinson, C., Töpel, D.: Comparing lml and fmmlx. In:
ACM/IEEE (ed.) Proceedings of the International Conference on Model Driven
Engineering Languages and Systems. IEEE Conference Publishing Services, Los
Alamitos, CA, Washington, Tokyo (2023)

13. de Lara, J., Guerra, E.: Deep meta-modelling with metadepth. In: Vitek, J. (ed.)
Objects, Models, Components, Patterns. pp. 1�20. Springer Berlin Heidelberg,
Berlin, Heidelberg (2010)

14. Neumayr, B., Grün, K., Schre�, M.: Multi-level Domain Modeling with M-objects
and M-relationships. In: Proceedings of the Sixth Asia-Paci�c Conference on Con-
ceptual Modeling - Volume 96. pp. 107�116. APCCM '09, Australian Computer
Society, Inc., Darlinghurst, Australia, Australia (2009)

