
Peculiarities of Language Engineering in Multi-Level
Environments or: Design by Elimination

A Contribution to the Further Development of Multi-Level Modeling Methods

Ulrich Frank

ulrich.frank@uni-due.de

Universität Duisburg-Essen

Tony Clark

tony.clark@aston.ac.uk

Aston University, Birmingham

ABSTRACT
Multi-level modeling (MLM) facilitates the design of modeling lan-

guages because foundational language concepts (defined with “lin-

guistic” metamodels) can be reused on any classification level and

consequently frees the developer from the burden of re-specifying

these concepts each time a new language is designed. This strength

of MLM can be used profitably in teaching since it enables students

to specify languages with relatively little effort with associated tool

support. However, MLM introduces new features that require exist-

ing methods to be extended with user support and which introduce

verification challenges. This paper describes these challenges with

respect to teaching modeling languages and outlines approaches to

address them.

KEYWORDS
software system architecture, DSML, language integration

ACM Reference Format:
Ulrich Frank and Tony Clark. 2022. Peculiarities of Language Engineering in

Multi-Level Environments or: Design by Elimination : A Contribution to the

Further Development of Multi-Level Modeling Methods. In ACM/IEEE 25th
International Conference on Model Driven Engineering Languages and Systems
(MODELS ’22 Companion), October 23–28, 2022, Montreal, QC, Canada. ACM,

New York, NY, USA, 10 pages. https://doi.org/10.1145/3550356.3561544

1 INTRODUCTION
Our work on multi-level language architectures is motivated by se-

rious obstacles we encountered with the design of domain-specific

modeling languages (DSMLs) and the implementation of corre-

sponding tools. The lack of abstraction that is characteristic of

MOF-like architectures forced us to represent knowledge redun-

dantly which is a threat to reuse, adaptability and integrity [5, 11].

In addition, it was not possible to instantiate models within a model

editor, because all classes, or metaclasses respectively, had to be

implemented as objects on M0.

Definition of a multi-level modeling language, the FMML
x
[8],

and its implementation in the XModeler [6], called XModeler
ML

[12]

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

MODELS ’22 Companion, October 23–28, 2022, Montreal, QC, Canada
© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9467-3/22/10. . . $15.00

https://doi.org/10.1145/3550356.3561544

addresses most of the issues noted above. However, further devel-

opment of the language and the tool raised new challenges (e.g.,

[12, 13]).

A few years ago we introduced multi-level modeling into a Mas-

ter’s course on advanced conceptual modeling. It did not come as

a surprise that many students struggled with the new paradigm.

To support them achieve an effective understanding of multi-level

modeling we developed a specific design method [10] and provided

numerous example models
1
. Nevertheless, it remains a challenge to

convince students of the merits of the approach. Our experience to

date indicates that problems highlighting limitations of traditional

non-MLM approaches is an effective motivation for ambitious stu-

dents.

Recently we realized that multi-level modeling is suited to in-

troductory modelling courses at undergraduate level where we

currently teach general-purpose languages such as the ERM, DFD,

state charts and the UML. To promote students’ understanding

of modeling languages, they receive simplified versions of corre-

sponding metamodels. To illustrate the instantiation of models

from metamodels, elements of metamodels are linked to the con-

cept they are instantiated from. Nevertheless, many students have

a hard time understanding this relationship. Also students appear

to struggle with model relationships, e.g., a UML object model and

its corresponding instantiations.

Since the XModeler
ML

supports the integration and execution

of models at any level, including L0
2
, into one multi-level diagram,

it gives students the opportunity to modify a model and see the

immediate effect on corresponding instances and allows students

to check whether a specific instance model is a valid instantiation:

in case it is not, the XModeler
ML

will prevent them from creating

it. Preliminary experience using this approach indicates that it

improves students’ understanding of models and their relationships

and it seems obvious to extend the approach to metamodels and

their instantiations where students would have the opportunity to

interact with objects, models and the corresponding metamodels at

the same time. This turned out to be a profound challenge, not only

for integrating metamodels of general-purpose modeling languages

(GPMLs) with their instantiations, but also with respect to language

design within multi-level architectures in general.

In the following we will at first illustrate the benefits multi-

level modeling offers for teaching the use of traditional GPML and

then analyse the challenge that results from using a multi-level

language architecture for this purpose. We demonstrate that this

1
see https://www.wi-inf.uni-duisburg-essen.de/LE4MM/

2
in the context of multi-level models, we refer to levels with the letter “L” to emphasize

that the notion of level in multi-level architectures is different from that in MOF-like

architectures.

https://doi.org/10.1145/3550356.3561544
https://doi.org/10.1145/3550356.3561544

MODELS ’22 Companion, October 23–28, 2022, Montreal, QC, Canada Ulrich Frank and Tony Clark

challenge needs to be addressed when designing multi-level DSMLs,

too. Finally, we will discuss key approaches to the challenge and

outline an implementation.

2 MULTI-LEVEL ARCHITECTURES FOR
TEACHING GENERAL-PURPOSE MODELING
LANGUAGES

Modeling tools that are based on a multi-level language architecture

support simultaneous work on a model and its instance within one

diagram. This opens up exciting opportunities to support teaching

of traditional GPMLs.

2.1 Potential Benefits
GPMLs usually feature a relatively small set of concepts that are rel-

evant for teaching introductory level courses. This is the case, e.g.,

for ERM and for DFDs, but also for the UML as long as basic con-

cepts are concerned. Our experience with teaching various GPMLs

in a business informatics Bachelor’s program indicates that students

often have a problem understanding the purpose of a metamodel

and relating models to a corresponding metamodel. In addition,

some students even struggle with understanding the relationship

between a model such as a UML object model and corresponding

instantiations. A MLM tool like the XModeler
ML

is suited to sup-

port students develop knowledge and skills over multiple levels of

abstraction because metamodels, models and instances can co-exist

within the same editor.

The following two examples illustrate this feature for the ERM

and DFDs. Constructing a metamodel with the XModeler
ML

helps

students understand language design. As soon as a metaclass is

added to a diagram, it will appear in the palette, where it can be

selected for creating a corresponding model element. Note that

we refrain from the definition of the concrete syntax, since the

didactic focus is on abstract syntax and semantics. Fig. 1 shows a

metamodel of DFDs that was created with the XModeler
ML

. As

soon as the metamodel is specified, students can create DFDs. In

addition, they may change the metamodel during or after the design

of DFDs. For example, the metamodel in Fig. 1 was extended by the

attribute critical of the class Function, which results in adding

a corresponding slot to all instances of Function. Instantiating a
metamodel supports students with checking whether it is complete.

Apparently, this is not the case for the metamodel in Fig. 1, because

it allows, among other things, the existence of functions in a DFD

that are not connected to a data flow.

The design and use of a metamodel that represents the ERM

is shown in Fig. 2. Note how constraints can be added and tested

immediately where issues are displayed on the diagram where con-

straints fail to be satisfied. While there is no need to introduce the

idea of MLM, the students should be aware of different classifica-

tion levels which are shown as numbers in diagram elements. In

addition, they should be told that every class, no matter whether

it is on M1 or M2, implicitly includes the attribute name. Note that
we excluded ternary relationships for didactic reasons.

The next example relates to a UML-like language and shows how

a model and its instantiation can be represented in one diagram. In

addition, the XModeler
ML

allows the methods defined for a class to

be implemented and executed so that students can quickly build a

small application that is integrated with the object model it is based

on and can interact with the objects they create through the diagram

or through additional text browsers (see Fig. 3). Modifications of

the metamodel have an immediate effect on corresponding models.

2.2 Limitations
The examples shown above demonstrate how a MLM tool can be

used to promote students understanding of traditional GPMLs by

representing two levels simultaneously. It would be nice to further

enrich the diagrams. This is especially the case for the ERM and

the UML-like diagrams, because DFDs are usually not shown at

M0. That would require the ERM diagram to be supplemented

with objects at M0 that are instantiated from the data model. In

addition, the UML-like diagram would have to be supplemented by

a metamodel of object models. Unfortunately, both extensions are

not trivial.

Without further measures the data model shown in Fig. 2 does

not support instantiation because instances of EntityAttribute
and RelationshipAttribute cannot be further instantiated. To

enable the instantiation of attributes, one could add an attribute

like value to the Attribute. In order to express that it is to be

instantiated only at M0, it would have to be marked as intrinsic

with the instantiation level 0. But that would not be enough. In

addition, it would be required to somehow establish links between

a slot value at level 0 and the corresponding attribute specification

at level 1. This could be achieved by adding an intrinsic associa-

tion between EntityType and RelationshipType, which would

to be instantiated at level 0. A constraint, specified either with

EntityType or EntityAttribute would then have to ensure that

instances of instances of EntityTypemay be linked to instances of

instances of EntityAttribute, if their respective classes are linked
on level 1. Handling relationships would require an even greater

effort. First, relationship attributes and their slots would need to be

handled the same way as entity attributes. In addition, there would

be need to make sure that objects at level 0 are properly linked

— according to the corresponding relationships defined at level 1.

Furthermore, the instantiation mechanism in the tool would have

to be adapted to handle the multiplicities defined with instances

of Link adequately. Apparently, such an approach to enable the

representation of objects on three levels would not only require a

significant effort. It would also fail to serve the primary objective,

that is, to help students with developing a better understanding

of defining and using modeling languages. Instead, it would likely

contribute to students’ confusion.

The object model in Fig. 3 includes objects at level 0, but does

not include a metamodel. Adding a metamodel would require an

effort comparible to extending the metamodel of the ERM, which is,

therefore, not an option. Furthermore, it would be strange to add a

metamodel, since there is already a metamodel that allows to create

UML-like object models. The concepts defined with the metamodel

of the FMML
x
, which in turn is an extension of XCore [6, p. 78] are

available at every level above 0. This corresponds to the idea of a

“linguistic metamodel” [4]. We will refer to it as “foundational meta-

model” in the following. Therefore, they do not have to be specified

anew. This represents a great advantage of multi-level language

Peculiarities of Language Engineering in Multi-Level Environments or: Design by Elimination MODELS ’22 Companion, October 23–28, 2022, Montreal, QC, Canada

Figure 1: Metamodel of DFD and example instantiation

architectures that follow the idea of “Orthogonal Classification Ar-

chitectures” [3]. Probably everyone who has developed modeling

languages within a MOF like architecture will have suffered from

the need to specify concepts like associations or attributes anew

when they were needed for a modeling language, even though

they had been defined with the corresponding meta-modeling lan-

guage. However, even though the FMML
x
enables the construction

of UML-like object models that are sufficient for teaching at the

undergraduate level, it includes concepts that are inappropriate for

objects models, such as intrinsic features that allow for deep in-

stantiation. These concepts are not only suited to confuse students,

they would also allow the construction of object models that are

not consistent with the idea of traditional UML-like objects models.

Before we present strategies that utilize the power of ubiqui-

tous language concepts without the threat to compromise model

integrity, we will look at peculiarities of designing DSMLs within

multi-level language architectures.

3 FOCUS ON DOMAIN-SPECIFIC LANGUAGES
The specification of traditional GPMLs is not the essential purpose

of multi-level languages. This is the case, too, for promoting teach-

ing of traditional GPMLs. Therefore, one could argue that these

problems are of minor relevance. However, as we shall see, similar

problems occur with the design of DSMLs, which for us is one of

the most important use cases of multi-level modeling.

3.1 Multi-level DSMLs
The design and implementation of DSMLs within traditional MOF-

like language architectures leads to serious and frustrating problems

[5, 11]. It is not possible to express all knowledge one has about

a domain with the metamodel that serves the specification of a

DSML. For example, a DSML to specify product types is restricted to

properties of types and cannot express properties that characterize

particular product instances such as a serial number. Also, the

specification of a DSML always has to start from scratch, usually

with the basic concepts provided by a general-purpose metamodel.

That leads to unnecessary effort and jeopardizes the integrity of a

language specification. In addition, as already mentioned above, the

need to define concepts required for a DSML anew, even though

they already exist in the meta-modeling language, is annoying.

Therefore, multi-level modeling has made our lives as language

designers clearly easier. Since the first version of the FMML
x
was

implemented with the XModeler we have developed various DSMLs

which offered clear and substantial benefits over previous DSMLs

that were designed with a slightly extended MOF architecture. The

design of a DSML did not have to start from scratch with basic

MODELS ’22 Companion, October 23–28, 2022, Montreal, QC, Canada Ulrich Frank and Tony Clark

connects

includes

connectedThru

includes

includes

connectedThru

connects

1

1..*

1

1includes

1
0..*

1
0connectedThru

2..2
1

0
1

connects

0..*

1

1

1

partOf

^MetaClass^

2 EntityType

^MetaClass^

2RelationshipType

^MetaClass^

2 Attribute

domain: DataType[1]1

^MetaClass^

2EntityAttribute
^MetaClass^

2RelationshipAttribute

^MetaClass^

1 Link

maxCard: Integer[1]0

minCard: Integer[1]0

upperLimit: Boolean[1]0

properMaxCard0

^EntityType^

1 Employee

^EntityAttribute^

1 firstName

domain = <DataType String>

^EntityAttribute^

1 lastName

domain = <DataType String>

^RelationshipType^

1 worksFor

^EntityType^

1 MarketingDepartment

^EntityAttribute^

1 openPos

domain = <DataType Integer>

^Link^

0 link1

maxCard = 0

minCard = 0

upperLimit = false

^Link^

0 link2

issue [0]

maxCard = 0

minCard = 1

upperLimit = true

issue [0] : If there is an upper limit, max. cardinality has to be
larger than 0 and larger or equal min. cardinality.

Figure 2: ERM meta model and example data model

concepts such as “Class” and “Attribute”. Instead, a DSML could be

specified with a more general DSML, similar to the evolution of

technical languages. It was possible to specify features that applied

to instances on L0 with metamodels on L2 or above. We could

instantiate and execute models at any level within one diagram

editor. As a consequence, applications could be integrated with the

DSMLs and models they were constructed with at runtime. And of

course, we were relieved from the burden to specify certain features

such as associations or attributes again and again.

Our enthusiasm for these advantages was so great that we ini-

tially ignored some drawbacks – also because they do not pose

a significant problem for experienced users. However, they can

hardly be ignored because they are suited to compromise the idea

of a DSML. A DSML should support its users with the creation of

models that are in line with a corresponding domain language. In

particular, it should prevent users to a large degree from creating

nonsensical models. Unfortunately, this is not always the case for

DSMLs developed within a multi-level language architecture, which

is due to the ambivalent effects of ubiquitous language concepts.

While they are extremely beneficial for the specification of DSMLs

for which they are required, their implicit inclusion in other DSMLs

creates a threat to the integrity of these languages and the models

created with them.

The example in Fig. 4 shows a screenshot of a part of a multi-level

model of the domain IT management. Different from traditional

approaches to DSML design, a DSML does not have to be designed

from scratch. Instead, a more general DSML can be used for this

purpose, e.g. a particular printer model is specified with a general

concept of printer at a higher level. It is also possible to express

knowledge about certain characteristics of objects at L0, e.g. the

address of a particular server or the serial number of a peripheral

device. Thus, the DSML provides support to efficiently design more

specific models. However, as the diagram in Fig. 4 illustrates, the

language architecture also allows the creation of models that ob-

viously deviate from the domain knowledge represented by the

DSML, but that would be still be valid, because they represent cor-

rect instantiations of the metamodel of the FMML
x
that is available

on each level. While the DSML – in this case at level 2 or above –

does not define a possible specialization relationship between ERP1
and Person, such a specialization can be added nevertheless, be-

cause XCore, and the FMML
x
respectively, defines that every class

can have a superclass (it allows, in fact, for multiple superclasses).

Similarly, associations can be added no matter how bizarre they are,

like the association “partOf” between the classes P1 and Scanner.

Peculiarities of Language Engineering in Multi-Level Environments or: Design by Elimination MODELS ’22 Companion, October 23–28, 2022, Montreal, QC, Canada

refersToincludes

issuedFor includes
refersTo

0..*

1

0

0issuedFor

1 1..*

0 0
includes

0..* 1

0 0
refersTo

^MetaClass^

1 Invoice

creationDate: Date[1]0

id: String[1]0

0 total(): Float

^MetaClass^

1 Customer

dateOfBirth: Date[1]0

firstName: String[1]0

lastName: String[1]0

0 age(): Integer

^MetaClass^

1 InvoiceItem

amount: Integer[1]0

0 itemTotal(): Float

^MetaClass^

1 Product

price: Float[1]0

^InvoiceItem^

0 it2

amount = 3

itemTotal()-> 373.5

^Product^

0 Printer

price = 124.5

^Product^

0 Microwave

price = 99.99

^InvoiceItem^

0 it1

amount = 2

itemTotal()-> 199.98

^Invoice^

0 invoice1

creationDate = 28 Jun 2022

id = IN_836

total()-> 573.48

^Customer^

0 c1

dateOfBirth = 10 Jul 2001

firstName = Peter

lastName = Pan

age()-> 21

Figure 3: Class diagram and corresponding instantiation

3.2 Adaptability and Integrity: A Trade-Off
The above examples of corrupting a multi-level model may seem

absurd and of little practical relevance. Nevertheless, it seems in-

appropriate that a DSML would allow for this kind of corruption.

There is, however, a difference between traditional GPMLs and

multi-level DSMLs. A GPML like the ERM or the UML are based

on a certain language specification that is widely accepted or even

standardized. Therefore, the creation of models that do not conform

with the language specification should be prevented by a modeling

tool. This can be different with a multi-level DSML. It intentionally

blurs the distinction between model and modeling language. Every

class above level 1 is part of a model that is concretized
3
from higher

level classes and, at the same time, represents a language to create

models at a lower level. In other words: higher level concepts, that

is, languages, are subject to change, too. Modelers can reuse higher

level concepts and adapt them to their needs, if required. This kind

of adaptability represents a clear advantage of multi-level DSMLs.

On the one hand, they benefit from economies of scale, since higher

level concepts can be (re-) used in a larger scope. On the other hand,

they can still tailor given concepts and add new ones, in order to

make a language more efficient for specific use cases.

Unless some kind of reference knowledge representation of a

domain exists (which is very unlikely), it is hardly possible to en-

tirely exclude modifications that are beside the point. Therefore,

3
We adopted the term from [17] to stress the difference to “regular” instantiation.

the demand for adaptability implies enabling the definition of addi-

tional associations, attributes, specialization relationships, etc. It

should also allow for deleting parts of (meta) models that do not fit

a specific domain. However, as soon as a multi-level model serves as

a reference, e.g., to support the integration of application systems

within an organizational information system, or even as a standard,

integrity, that is, compliance with a reference model is likely to

become a higher priority than adaptability. The higher the level

of a language in such a hierarchy, the more invariant it should be.

First, it will serve more parties/systems as a reference, second the

modification of higher levels is likely to complicate maintenance of

a multi-level model.

Against this background, we arrive at the following preliminary

interim result. While the proper use of given GPMLs will usually

require to prevent modifications of language concepts, multi-level

DSMLs demand for a more differentiated approach that aims at an

appropriate trade-off between adaptability and integrity.

4 APPROACHES TO COPE WITH UBIQUITOUS
LANGUAGE CONCEPTS

As we have seen above, the benefits of ubiquitous language con-

cepts are offset by significant challenges. They require appropriate

measures to avoid or at least mitigate serious drawbacks. Before

we present three prototypical approaches, we will at first consider

a few essential properties of multi-level language architectures as

they are enabled by a meta language like the FMML
x
.

MODELS ’22 Companion, October 23–28, 2022, Montreal, QC, Canada Ulrich Frank and Tony Clark

0

usedBy

fills

usedBy

mayBeManagedBy

mayUse

mayBeManagedBy

runsOn

managedBy

managedBy fills

1..*

1..*

11

runsOn

0..*

1..*

1

1

mayBeManagedBy

0..*

1..*

0

0

usedBy

1..*

0..*
00

uses

0..*

1

0

0

managedBy

0..*0..*

10 installedOn

11

00 fills

1..*

0..*

1

1
mayUse

0..1

0..1

0

1

partOf

^Employee^

0 e1

hired = 14 Feb 2018

id = F830T

^Person^

0 p1

firstName = Manfred

lastName = Mann

^SalesAgent^

0 s1

filled()-> true

^ACD_400^

0 aCD_4001

actMemory = 8

purchasePrice = 199.99 EUR

serialNo = AC893

^IT_Manager^

0 iT_Manager1

filled()-> true

^Employee^

0 e2

hired = 01 Mar 2022

id =

^Person^

0 p2

firstName = Tina

lastName = Turner
^ACD_400^

0 aCD_4002

actMemory = 0

purchasePrice = 900EUR

serialNo = AC_7836

^Printer^

1 P1

bothSided = false

defOperatingLife = 4

pagePerMin = 80

powerCon = 85

resolution = 600

numOfDevices()-> 0

^Desktop^

1 ACD_400

defOperatingLife = 5

maxMemory = 16

powerCon = 48

numOfDevices()-> 2

^Position^

1 SalesAgent

reqQuali = A sales ..

^Position^

1 IT_Manager

reqQuali = An IT manager ...

^Application^

1 ERP1

domain = Finance

version = 4.1

^OrgUnit^

2 Position

reqQuali: String[1]1

0 filled(): Boolean

composed = false

^PeripheralDevice^

2 Printer

bothSided: Boolean[1]1

pagePerMin: Integer[1]1

resolution: Integer[1]1

operatorReq = false

^PeripheralDevice^

2 Scanner

docFeed: Boolean[1]1

resolution: Integer[1]1

operatorReq = true

^Computer^

2 Desktop

portable = false

^Computer^

2 Laptop

screenSize: Integer[1]1

weight: Float[1]1

portable = false

^Software^

2 Application

domain: String[1]1

infrastructure = false

^MetaClass^

1 Employee

hired: Date[1]0

id: String[1]0

^MetaClass^

1 Person

firstName: String[1]0

lastName: String[1]0

^MetaClass^

3 DigitalDevice

defOperatingLife: Integer[1]1

powerCon: Integer[1]1

purchasePrice: MonetaryValue[1]0

serialNo: String[1]0

1 numOfDevices(): Integer

properlyManaged0

^MetaClass^

3 OrgUnit

composed: Boolean[1]2

^MetaClass^

3 PeripheralDevice

operatorReq: Boolean[1]2

^MetaClass^

3 Computer

portable: Boolean[1]2

maxMemory: Integer[1]1

actMemory: Integer[1]0

compatible0

^MetaClass^

3 Software

infrastructure: Boolean[1]2

version: String[1]1

Figure 4: Multi-level model of IT management

Peculiarities of Language Engineering in Multi-Level Environments or: Design by Elimination MODELS ’22 Companion, October 23–28, 2022, Montreal, QC, Canada

4.1 General Considerations
Apart from monotonic extensions, changing the foundational meta-

model of a multi-level language hierarchy represents a delicate

concern. By the very nature of a multi-level language hierarchy, the

concepts of the metamodel are valid at all levels. Removing a certain

concept at a lower level would create a serious problem. For exam-

ple, every class in a multi-level model created with the FMML
x
has

an attribute name, which is defined with the class NamedElement in
the metamodel. Apart from the fact that the XModeler

ML
does not

allow this attribute to be removed from a class, doing so would pro-

duce a contradiction. If the attribute was removed from a class c, it

would obviously be the case that c does not include such an attribute.

However, at the same time, it would be valid to conclude that it has

this attribute, because of the general statement backed by the meta-

model: “Every class has an attribute name.” Accordingly, it would
not be feasible to delete other elements of the FMML

x
metamodel

see [9], such as intrinsic features (defined through the attributes

isIntrinsic and instLevelwith classes that represent properties
of classes, e.g., Attribute or CompiledOperation).

Deleting unwanted concepts directly in the metamodel is not

a good idea either. It would result in destroying the entire tool,

because the construction of all objects the tool is built from reflect

the structure of the metamodel. The following options avoid the

obstacles of corrupting a given multi-level model by using less

radical measures. Note that the term “elimination” is not meant as

deletion from the system, but rather as making concepts unavailable

to users.

4.2 Elimination by Hiding
To avoid the inadequate use of concepts defined with the founda-

tional metamodel, they can be faded out at the level of the user

interface. This is the case for the FMML
x
diagram editor to prevent

the use of multiple inheritance which would be allowed by the

metamodel. It defines a view on the metamodel that is sufficient for

a certain language. For example, a view provided for the specifica-

tion of a modeling language that is restricted to static abstraction

would fade out operations. Similarly, access to constraints, intrinsic

features or specialization could be hidden from the user.

This kind of elimination by hiding is in principle a suitable ap-

proach to “tailor” a foundational metamodel to specific require-

ments. It does not require changes to the language architecture

and therefore does not jeopardize its integrity. However, its suit-

ability depends on use case and users. As long as the use case is

restricted to editing diagrams only, and users do not request alter-

native approaches to interact with a model, elimination by hiding

is satisfactory. In this case, the view would be defined for the di-

agram editor only. The effort required to adapt a diagram editor

accordingly depends on its architecture, that is, the more possible

views were anticipated with the design of a tool and represented

by adequate abstractions, the easier will it be to fade out certain

concepts.

However, this approach reaches its limits, as soon as a diagram

editor is not the only way to access a model. In the FMML
x
, it is pos-

sible to interact with a model through object browsers or through

the console. While it is conceivable to design object browsers that

can be adapted to specific views dynamically (which is not the case

for the current implementation of the FMML
x
), restricting access

through the console is hardly an option.

4.3 Elimination by Constraints
Constraints represent a more effective approach. A language defini-
tion is a multi-level model at level L2 or higher together with the

constraints that apply to instances of the language definition, i.e.

the models written in the language. In general, these constraints

should not contradict the foundational meta-model since they serve

to restrict the given range of possible instantiations.

The XModeler
ML

implements a model as a package which can

contain elements at any level. Since Package is a specialization of

Class, a package can have instances, which themselves are pack-

ages. This meta-package relationship leads to an XCore language

constraint require that packages only contain instances of elements

defined in their meta-package, and which satisfy the constraints

defined on the meta-package. The meta-package together with its

constraints form a language definition.
The following examples show constraints that are attached to

the package ERM, which represents a specification of the ERM in

Fig. 2. The first two constraints prevent the use of operations and

specialization:

context ERM
@Constraint noSpecialization

not(contents→exists(c |
c.isKindOf(Class) implies c.parents→size = 1))

end
@Constraint noSpecialization

not(contents→exists(c |
c.isKindOf(Class) implies c.operations→size = 0))

end

As defined above, ERM is a meta-package whose instances are models

(contained in packages). The contents of a model may contain many

different types of elements, however we define any classes to have

exactly one superclass (represented by the implicit superclass Class
in XCore) and no operations.

The final example shows how to prevent the use of intrinsic

features:

context ERM
@Constraint noIntrinsics

not(contents→exists(c |
c.isKindOf(Class) and c.hasIntrinsics ())

end

In addition to preventing the use of certain language features in

general, it may also be required to constrain the value range allowed

by a concept or to prevent its use with selected classes only (see

Subsection 4.6).

4.4 Elimination by Freezing
Sometimes we require that elements are not changed, deleted or

supplemented by further elements. This is especially the case for

languages that need to comply with certain standards. Freezing a
certain state is a special case of elimination by constraints. Some-

times all classes of a specific level need to be defined as invariant,

which may also be required to prevent additional classes. An ex-

ample of this case in shown in Fig. 2 that represents a minimal

metamodel of the ERM. In other cases, classes at different levels

may have to be defined as invariant. If a higher level DSML for the

domain of IT management should serve as a common reference,

MODELS ’22 Companion, October 23–28, 2022, Montreal, QC, Canada Ulrich Frank and Tony Clark

more generic classes and their properties should not be deleted.

Depending on the intended use cases, it may be possible to make

monotonic extensions. In addition to classes at a certain level (in

the example in Fig. 4, e.g., all classes at L3), further classes at other

levels could be regarded as sufficiently generic to protect them

against changes. This could be the case for the class Person, even
though it is at L1 only.

Freezing can be implemented by XModeler
ML

in the context of

language definitions through the use of multi-level constraints de-

fined at the package level. To understand how this works, consider

a model element e. The semantics of e is defined in terms of the

constraints provided by its classifier m.of(). If m is semantically

correct then each m.of().constraints must hold for m. In a MLM

situation, there may also be constraints defined by m.of().of()

and so on up the classification chain. In order to apply to m such

multi-level constraints must define the levels over which they span.

For example, a constraint at m.of().of() may state that it applies

only to elements 2 classification levels below, one classification

level below or all classification levels below.

Freezing can be implemented using multi-level constraints on

meta-packages that apply to all classification levels below the meta-

package. For example, the following constraint applies ERM as a

meta-package and requires that all of its classes that are defined

at level 2 have frozen instances. This is achieved by the instances
of classes at level 2 (which themselves are classes at level 1) are

limited to having Object as a super-class. The effect is that no level

1 class that conforms to the ERM language can extend the features

defined by the language.

context ERM
@Constraint FreezeClasses

contents→forall(c |
c.level = 2 implies

c.allInstances→forall(sc |
sc.parents = {Object }))

end

Once we allow constraints that range over multiple levels of clas-

sification (via the allInstances property) we can state conditions

that range both up and down the type hierarchy. Another example

permits new attributes to be added:

context ERM
@Constraint FreezeClassesButAllowAttributes

contents→forall(c |
c.level = 2 implies

c.allInstances→forall(sc |
sc.parents.getAllOperations ()→isEmpty))

end

4.5 Further Issues
It will usually be possible to compromise a multi-level model by

introducing formally valid, but nonsensical features like a bizarre

specialization, or absurd attributes and associations. While such

modifications cannot entirely be prevented, because that would not

only require complete knowledge about the present and future of a

domain, but also a standardized terminology, it is conceivable to

at least exclude modifications that are known as being inadequate.

This should often be possible at the highest level of abstraction.

With respect to the model in Fig. 4, one could define that no class

within the concretization subtree
4
of, e.g., the class Computer can

be specialized from a class within the concretization subtree of the

class Software, et vice versa; or that none of the classes at level 1
within the concretization tree of classes at L3 can be specialized

from Person, or the other way around. This knowledge could then

be represented by corresponding constraints.

While the ubiquitous availability of the concepts defined with

the foundational metamodel will often be a relief, those concepts

will sometimes not be sufficient. There are, e.g., modeling language

where we know that there will be a certain kind of association,

e.g., at L1, but we do not know the specific multiplicities. While we

can express this knowledge at the highest level where it applies

through intrinsinc associations, the foundational metamodel of the

FMML
x
does not allow deferring the definition of multiplicities to

a lower level. Adaptations like this one cannot be addressed by the

prototypical approaches presented above.

4.6 Implications on Design Method and Tools
Multi-level DSMLs are often used by domain experts who lack the

technical knowledge to express constraints. This will often be the

case, too, for students that attend introductory level courses on

conceptual modeling. In order to enable these users to “tailor” a

foundational metamodel to the language of their choice, specific

support is required.

At first, methods for designing modeling languages or multi-

level models in particular, e.g., [10, 16], would have to be adapted

to include aspects of “design by elimination”. For that purpose, an

additional phase like “language configuration” could be added. It

would be aimed at selecting those concepts of a given foundational

metamodel that are required to satisfy the requirements of the

model to be designed. It should be supported by guidelines, a given

list of concepts, and specific tool support (see below). In addition,

the phase that is dedicated to (meta) model design would have

to be modified. This is especially relevant for the specification of

traditional GPML. As the example of the ERM in Fig. 5 indicates,

metamodels that reflect the idea of “design by elimination” are

not only different from traditional metamodels, they even seem

to be insufficient. Therefore, it is important to explain the idea

that every specific (meta) model is virtually extended with the

concepts defined with the foundational metamodel. In addition,

the method should guide users with the identification of further

constraints. To this end, they could be presented with questions

like “is it conceivable that classes of the kind x are specialized from

classes of the kind y?”, or “are there any constraints that apply to

general concepts like attributes or associations?”. The latter could,

e.g., relate to multiplicities (see metamodel of ERM below) or to

possible types of attributes. Also, such a method would demand

for checking whether parts of a (meta) model should be protected

against various forms of change, such as adding further elements,

or modifying/deleting existing ones.

Second, there is need for tool support. Users are presented with a

list of language concepts provided by the foundational metamodel.

Then they simply select the ones that are required (or that should

be excluded) for the purpose they have in mind. In the simplest case,

4
We use the this term to denote the set of all direct and indirect concretizations (see

[11, p. 454]) of a class.

Peculiarities of Language Engineering in Multi-Level Environments or: Design by Elimination MODELS ’22 Companion, October 23–28, 2022, Montreal, QC, Canada

these would lead to the activation of corresponding constraints.

More sophisticated tools would feature a dynamic adaptation of the

GUI. Third, and this is especially relevant for teaching modeling

languages, the resulting metamodel should be presented to users in

a comprehensible form. Subsequently, a minimal metamodel is de-

signed, which is a model consisting only of those concepts required

in addition to the ubiquitous concepts of the foundational meta-

model. The user would then have to decide whether the metamodel

is complete and must not be changed.

Fig. 5 shows a metamodel of the ERM that was created by “de-

sign by elimination”. It consists of two classes at L2 only. Attributes

and associations are implicitly defined with the foundational meta-

model. The proper use of these concepts requires additional con-

straints, e.g. that associations are allowed only between instances

of EntityType and RelationshipType:

context ERM
@Constraint EntityRelationshipConstraint

contents→forall(a |
a.isKindOf(Association) implies

{a.end1.class ,a.end2.class} = {EntityType ,RelationshipType
})

end

or that instances of RelationshipType have to be associated with

two and exactly two instances of EntityType (this is the case for
the version of the ERM we use for teaching purposes).

context ERM
@Constraint RelationshipType2EntityType

contents→forall(r |
r.isKindOf(RelationshipType)

contents→exists(a1,a2 |
a1.isKindOf(Association) and
a2.isKindOf(Association) and
{a.end1 ,a.end2}→subsetOf ({a}) and
{a.end1 ,a.end2}.class→subsetOf ({ EntityType }) and
contents→forall(a |

a.isKindOf(Association) and
a.end1 = r or a.end2 = r
implies a = a1 or a = a2))

end

Furthermore, multiplicities of associations assigned to instances

of EntityType have to be 1,1. The corresponding implementation

is suited to show the interplay of metamodel, model and model

instances within one diagram. Nevertheless, it is hardly satisfactory

for teaching purposes. Therefore, the reduced metamodel needs

to be supplemented by those parts of the foundational metamodel

selected for a specific language. Fig. 5 illustrates the design pro-

cess. After a user selected the required concepts, a corresponding

view on the FMML
x
metamodel is generated. Note that the view on

the metamodel is simplified. The metaclass Class is level contin-
gent, indicated by a “C”. Also, the diagram is not integrated with

the diagram editor. Instead, the view on the metamodel is gener-

ated as SVG and shown together with the minimal metamodel as

demonstrated in Fig. 5.

4.7 Related Work
De Lara et al. [7, 14] developed approaches to customize metamod-

els. To that end, they propose two “control mechanisms”. “Modifiers”

serve marking elements of a language that must not be extended.

That corresponds to the idea of “freezing” language concepts. Con-

straints are to “ensure a certain extensibility degree” [7, p. 43],

which means to control the use of elements of the foundational

metamodel at a specific level, such as allowing or permitting adding

further attributes. This mechanism corresponds widely to “elim-

ination by constraints”. While our approach is clearly similar to

[7], it differs from that in a number of ways. It also accounts for

“elimination by hiding” (which is a minor difference only). Different

fromMetaDepth, the XModeler
ML

features a diagram editor for

the graphical representation of models. Our work has a specific fo-

cus on using multi-level modeling for teaching modeling languages

that were originally specified within MOF-like architectures. To

that end, we propose how to present metamodels of traditional

modeling languages that are based on an orthogonal classification

architecture.

The work of Atkinson et al. to support changes (“emendations”)

of multi-level models [2] does not share the specific motivation

of our work, but includes mechanisms that could be used for our

purpose, too. For example, “value mutability” that is offered by

Melanie [1] could be used to change multiplicities defined at a

higher level, which can be helpful for customizing a languagewithin

a multi-level hierarchy. It seems, however, that it does not allow

for “eliminating” parts of the foundational metamodel.

5 CONCLUSIONS AND FUTURE RESEARCH
The potential threat of concepts implicitly provided by a founda-

tional metamodel is probably not a serious problem for experienced

language designers and modelers who are familiar with multi-level

language architectures. However, the use of multi-level modeling is

not limited to advanced modelers or language engineers and can be

beneficial for a wide range of users. This includes the use of specific

DSMLs and the use of models written in these languages. Corre-

sponding users do not have to be familiar with foundational aspects,

but should nevertheless be protected against unintentionally dam-

aging a model. As we have shown, multi-level language hierarchies

also provide a promising foundation for teaching the use of tra-

ditional GPMLs or the design and implementation of DSMLs. We

believe that this is an important use case to promote the adoption

of multi-level modeling.

In order to use the power of multi-level modeling for demon-

strating various levels of abstraction, we presented a preliminary

approach to superimpose a generated view on a foundational meta-

model with a minimal metamodel of a specific language. The “con-

figuration” of a metamodel (which is actually not changed, only

its use is restricted) should work for most modeling languages,

including DSMLs. Currently, additional constraints that represent

specific aspects of a language, have to be specified manually. We

plan to study more languages in order to find patterns that support

automatic constraint generation of certain kinds.

The current version of the XModeler
ML

does not include an

editor for graphical notations. An earlier version can no longer

be used as a result of a major overhaul of the diagram editor. As

soon as the new version of the notation editor is available, we will

extend the use of multi-level modeling for teaching purposes, both

on the graduate and undergraduate level. Building on initial studies

[15], we plan to conduct further empirical investigations on the

effect methods and tools have on teaching and learning conceptual

modeling.

MODELS ’22 Companion, October 23–28, 2022, Montreal, QC, Canada Ulrich Frank and Tony Clark

linkslinkedThru

1 1

0 0
linkedThru

1..* 1

0 0links

^Class^

2 EntityType
^Class^

2RelationshipType

^EntityType^

1 Employee

firstName: String[1]0

lastName: String[1]0

^EntityType^

1 Department

budget: Float[1]0

^RelationshipType^

1 Employment

hired: Date[1]0

^Department^

0 Marketing

budget = 500000.0

^Employment^

0 em1

hired = 01 Jul 2020

^Employee^

0 e1

firstName = Peter

lastName = Pan

1

1

connects

0..* 1

attachedTo

0..*

0..1

specializedFrom

1

0..*

includes

0..*
1

typedThru

0..1

0..1

defines

^Class^

1 Multiplicity

hasUpper: Boolean[1]

lowerBound: String[1]

upperBound: Integer[1]

^Class^

1 End

shownName: String[1]

^Class^

C Class

XName: String[1]

isAbstract: Boolean[1]

^Class^

1 Attribute

name: String[1]

concretized from
minimal metamodel

superimposed view on FMMLx metamodel
selection of required features

Figure 5: Reduced metamodel of ERM

REFERENCES
[1] Colin Atkinson and Ralph Gerbig. 2016. Flexible Deep Modeling with Melanee.

In GI-Edition / Proceedings, Vol. 255. Köllen, Bonn, 117–121.
[2] Colin Atkinson, Ralph Gerbig, and Bastian Kennel. 2012. On-the-Fly Emendation

of Multi-Level Models. In Modelling Foundations and Applications (Lecture Notes
in Computer Science). Springer, Berlin, Heidelberg, 194–209. https://doi.org/10.

1007/978-3-642-31491-9_16

[3] Colin Atkinson, Matthias Gutheil, and Bastian Kennel. 2009. A Flexible Infras-

tructure for Multilevel Language Engineering. IEEE Transactions on Software
Engineering 35, 6 (Nov. 2009), 742–755. https://doi.org/10.1109/TSE.2009.31

[4] Colin Atkinson and Thomas Kühne. 2003. Model-Driven Development: A

Metamodeling Foundation. IEEE Software 20, 5 (Sept. 2003), 36–41. https:

//doi.org/10.1109/MS.2003.1231149

[5] Colin Atkinson and Thomas Kühne. 2008. Reducing Accidental Complexity

in Domain Models. Software & Systems Modeling 7, 3 (July 2008), 345–359.

https://doi.org/10.1007/s10270-007-0061-0

[6] Tony Clark, Paul Sammut, and James Willans. 2008. Applied Meta-
modelling: A Foundation for Language Driven Development (2 ed.).

Ceteva. http://www.eis.mdx.ac.uk/staffpages/tonyclark/Papers/Applied%

20Metamodelling%20%28Second%20Edition%29.pdf

[7] Juan de Lara, Esther Guerra, Ruth Cobos, and Jaime Moreno-Llorena. 2014. Ex-

tending Deep Meta-Modelling for Practical Model-Driven Engineering. Comput.
J. 57, 1 (Jan. 2014), 36–58. https://doi.org/10.1093/comjnl/bxs144

[8] Ulrich Frank. 2014. Multilevel Modeling: Toward a New Paradigm of Conceptual

Modeling and Information Systems Design. Business & Information Systems
Engineering 6, 6 (Dec. 2014), 319–337. https://doi.org/10.1007/s12599-014-0350-4

[9] Ulrich Frank. 2014. Multilevel Modeling: Toward a New Paradigm of Conceptual

Modeling and Information Systems Design. Business and Information Systems
Engineering 6, 6 (2014), 319–337.

[10] Ulrich Frank. 2021. Prolegomena of a Multi-Level Modeling Method Illustrated

with the FMML
x
. In Proceedings of the 24th ACM/IEEE International Conference

on Modell Driven Engineering Languages and Systems: Companion Proceedings.
IEEE.

[11] Ulrich Frank. 2022. Multi-level modeling: cornerstones of a rationale. Software and
SystemsModeling Online First (2022). https://doi.org/10.1007/s10270-021-00955-1

[12] Ulrich Frank, Luca L. Mattei, Tony Clark, and Daniel Töpel. 2022. Beyond Low

Code Platforms: The XModeler
ML

- an Integrated Multi-Level Modeling and

Execution Environment. In Proceedings of the Modellierung 2022 Satellite Events,
Judith Michael, Jérôme Pfeiffer, and Andreas Wortmann (Eds.). GI, Bonn, 235–244.

https://doi.org/10.18420/MODELLIERUNG2022WS-032

[13] Ulrich Frank and Daniel Töpel. 2020. Contingent Level Classes: Motivation, Con-

ceptualization, Modeling Guidelines, and Implications for Model Management.

In Proceedings of the 23rd ACM/IEEE International Conference on Model Driven
Engineering Languages and Systems: Companion Proceedings, Esther Guerra and
Ludovico Iovino (Eds.). New York, NY, USA, 622–631.

[14] Santiago Jacome and Juan De Lara. 2018. Controlling Meta-Model Extensibility

in Model-Driven Engineering. IEEE Access 6 (2018), 19923–19939. https://doi.

org/10.1109/ACCESS.2018.2821111

[15] Sybren De Kinderen, Monika Kaczmarek-Hes, and Kristina Rosenthal. 2021.

Towards an Empirical Perspective on Multi-Level Modeling and a Comparison

with Conventional Meta Modeling. In 24th International Conference on Model-
Driven Engineering Languages and Systems. IEEE, Piscataway, NJ, 531–535. https:

//doi.org/10.1109/MODELS-C53483.2021.00082

[16] Juan De Lara, Esther Guerra, and Jesús Sánchez Cuadrado. 2014. When and

How to Use Multilevel Modelling. ACM Trans. Softw. Eng. Methodol. 24, 2 (2014),
12:1–12:46. https://doi.org/10.1145/2685615

[17] Bernd Neumayr, Katharina Grün, and Michael Schrefl. 2009. Multi-Level Domain

Modeling with M-Objects and M-Relationships. In Proceedings of the 6th Asia-
Pacific Conference on Conceptual Modeling (APCCM), Sebastian Link and Markus

Kirchberg (Eds.). Australian Computer Society, Wellington, 107–116.

https://doi.org/10.1007/978-3-642-31491-9_16
https://doi.org/10.1007/978-3-642-31491-9_16
https://doi.org/10.1109/TSE.2009.31
https://doi.org/10.1109/MS.2003.1231149
https://doi.org/10.1109/MS.2003.1231149
https://doi.org/10.1007/s10270-007-0061-0
http://www.eis.mdx.ac.uk/staffpages/tonyclark/Papers/Applied%20Metamodelling%20%28Second%20Edition%29.pdf
http://www.eis.mdx.ac.uk/staffpages/tonyclark/Papers/Applied%20Metamodelling%20%28Second%20Edition%29.pdf
https://doi.org/10.1093/comjnl/bxs144
https://doi.org/10.1007/s12599-014-0350-4
https://doi.org/10.1007/s10270-021-00955-1
https://doi.org/10.18420/MODELLIERUNG2022WS-032
https://doi.org/10.1109/ACCESS.2018.2821111
https://doi.org/10.1109/ACCESS.2018.2821111
https://doi.org/10.1109/MODELS-C53483.2021.00082
https://doi.org/10.1109/MODELS-C53483.2021.00082
https://doi.org/10.1145/2685615

	Abstract
	1 Introduction
	2 Multi-level Architectures for Teaching General-Purpose Modeling Languages
	2.1 Potential Benefits
	2.2 Limitations

	3 Focus on Domain-Specific Languages
	3.1 Multi-level DSMLs
	3.2 Adaptability and Integrity: A Trade-Off

	4 Approaches to Cope with Ubiquitous Language Concepts
	4.1 General Considerations
	4.2 Elimination by Hiding
	4.3 Elimination by Constraints
	4.4 Elimination by Freezing
	4.5 Further Issues
	4.6 Implications on Design Method and Tools
	4.7 Related Work

	5 Conclusions and Future Research
	References

