
Modeling Facets of a Warehouse with the FMMLX:
A Contribution to the MULTI Warehouse Challenge

Ulrich Frank∗, Pierre Maier∗, Daniel Töpel∗,
∗ University of Duisburg-Essen, Essen, Germany

Abstract—This paper presents a contribution to this year‘s
MULTI challenge concerned with the modeling of physical prod-
ucts in a warehouse. Based on an analysis of the requirements
presented with the challenge, we develop a corresponding multi-
level model with the FMMLX. The model is implemented with the
XModelerML. Therefore, it is executable. We evaluate the solution
against the requirements and discuss it with respect to principle
design decisions, its adaptability, and the inspiration we received
from this work for future enhancements of the FMMLX.

Index Terms—multi-level modeling, warehouse challenge,
FMMLX, XModelerML, modeling guidelines

I. INTRODUCTION

Research on multi-level modeling (MLM) has produced

a variety of multi-level modeling languages and respective

modeling tools (e.g., [1], [4], [8], [10], [17], [20], [23], [25]).

Apart from common foundational concepts, these approaches

differ both in terms of particular language terms and with

respect to corresponding modeling tools. In recent years, there

has been a clear interest in consolidating research. This is

expressed above all in promoting the comparability of the

different approaches and, thus, defining a common core.

The MULTI challenges series reflects this objective. A

challenge relates to a use case, which is described in terms of

requirements that need to be satisfied by the respective MLM

approach. This year’s challenge concerns the management of

physical products in a warehouse [21].

Products represent an especially suited subject for MLM

because they exist in a considerable variety, which demands

for powerful abstraction concepts. It is therefore not surprising

that the representation of products often serves as a prime

example to motivate the need for MLM (e.g., [2], [3], [8],

[10], [19]).

Before we present and discuss our solution, we introduce

parts of a multi-level modeling method we applied to develop

the model. It consists of the FMMLX (section II) and guide-

lines that support design decisions (section III). In addition,

we provide a short overview of the corresponding modeling

tool, the XModelerML (section II), and an analysis of the

case described with the challenge (section IV). The main

part of the paper is dedicated to the design of the solution

(section V). Subsequently, the solution is evaluated against

the requirements (section VI). At last, we discuss additional

aspects of the presented model’s quality and of the FMMLX

(section VII).

II. BACKGROUND: FMMLX AND XMODELERML

The flexible multi-level modeling and execution language

(FMMLX)1 is an object-oriented language and provides the

following basic modeling constructs. Classes are intensionally
defined by their properties, that is, attributes, operations,

associations and constraints. Attributes are defined by a class

or an enumeration type and a name. Each class is an object

at the same time. Hence, it has state, may execute operations,

and is an instance of a class. As a consequence, the FMMLX

allows for an arbitrary number of levels. We do not use the

common term “clabject” (e.g., [3]) to express this duality, since

the metamodel of the FMMLX makes an explicit distinction of

the concepts Class and Object (see below). To avoid confusion,
we speak of “class” whenever we refer to the class facet of

an object, otherwise of “object.”

Each object in an FMMLX model is assigned an explicit

level. A level indicates the classification level, but must not

be confused with pure classification (at least in case of the

classification of classes). A class is created from its class

through an act we call concretization, following a proposal

in [24]. Concretization is different from instantiation because

a concretized class does not only instantiate properties defined

with its class but also inherits from the root class of the core

metamodel (see below). Each instance or concretization of a

class A is called its descendant; class A inversely the ancestor.
We call the set of all descendants of a class the concretization
tree of that class.

As a default, the level of a class reflects the number of

classifications starting at L0 (we use “L” as an abbreviation

for “level” in the following). Properties can be defined as

intrinsic, which means they are supposed to be instantiated

not within direct descendants of a class, but only further

down the concretization tree (“deferred instantiation”). To

that end, the specification of intrinsic properties includes the

definition of the level where they should be instantiated. This

instantiation level of an intrinsic property must be lower

than the level of its class minus one. To facilitate consistent

changes, intrinsic properties are specified in a FMMLX model

only once. Within lower level classes only include references

to these specifications.

Associations may be defined between two classes at dif-

ferent levels. However, generalization/specialization relation-

ships can be defined only between classes at the same level.

1Note that the acronym was resolved to “flexible meta-modeling and
execution language” in early publications.

659

2023 ACM/IEEE International Conference on Model Driven Engineering Languages and Systems Companion (MODELS-C)

979-8-3503-2498-3/23/$31.00 ©2023 IEEE
DOI 10.1109/MODELS-C59198.2023.00107

Operations and constraints are defined with the executable

object constraint language (XOCL)2([5], [6]). In other words:

FMMLX models are represented with the XOCL, a complete

programming language, which makes them executable. The

FMMLX comprises a default notation that follows the UML

style and, among others, uses colors to distinguish levels.

To customize the design of multi-level DSMLs, the default

notation can be replaced by a domain-specific variant.

The FMMLX is specified as a monotonic extension of

“XCore,” the meta-model of the executable meta-modeling

facility (XMF) [6]. Since it implements a “golden braid

metamodel architecture” [5, pp. 23f.], XCore enables an

arbitrary number of classification levels. The core idea is that

each class (except for classes at L1) inherits from Class.
Hence, these essential properties are available with every class,

which corresponds to the linguistic metamodel other MLM

approaches are based on.

At the same time Class inherits from the class Object
(which itself is an instance of Class) with the effect that

every class has object properties, that is, it has a state and

can execute operations. Different from the FMMLX, XCore

does not provide for the definition of levels or for deferred

instantiation.

The XModelerML extends the XModeler, the implemen-

tation of XMF [5]. It implements the FMMLX and allows

the execution of FMMLX models. Upon the specification of

attributes and associations, the XModelerML generates corre-

sponding access methods, which can be faded in and out on

demand. This is the case, too, for properties that are derived

from higher level classes.

The XModelerML allows to create and interact with FMMLX

models by using a diagram editor, a multi-level object browser,

an object workspace, and a generated default GUI for selected

objects. A concrete syntax editor enables the creation and

integration of graphical notations.

The diagrams shown in Fig. 1 and Fig. 3 illustrate core

concepts of the FMMLX as well as its default notation. More

detailed descriptions of the FMMLX, XCore, and XMF are

available in [10] and [5]–[7], [11], [12].

III. MULTI-LEVEL MODELING GUIDELINES

Modeling methods suggested for the use of traditional

languages with one classification level only, or for the design

of traditional DSMLs (e.g., [9], [18]) provide useful general

modeling principles such as “separate invariant from variable

parts of a system,” or “avoid redundancy.” but are not sufficient

to guide the appropriate use of additional concepts provided

by multi-level languages. We follow the multi-level modeling

guidelines proposed in [13] as an orientation for a method-

ical development of the presented solution. Table I gives an

overview of selected design principles that are part of these

guidelines.

2The XOCL is sometimes also referred to as “executable object command
language”.

The design principles do not work as a cookbook. Instead,

each principle recommends a thorough analysis of the respec-

tive domain.

TABLE I
MULTI-LEVEL MODELING GUIDELINES FROM [13] (EXCERPT)

id Design Principle Description
G-1 Specify known knowledge on the highest possible level within

the scope of your project.
G-2 The higher the level of an object, the more invariant it should

be.
G-3 The design of an object at any level should aim at modifica-

tion consistency.
G-4 Assign properties of objects on levels higher than L1 to

categories that indicate semantic differences.
G-5 Every class should be assigned the level where it conceptually

belongs.
G-6 Avoid the introduction of “fake” levels, that is, of levels that

could be expressed through generalization/specialization.
G-7 Commonalities should be captured by an appropriate abstrac-

tion also in cases of incomplete knowledge

IV. WAREHOUSE CASE ANALYSIS

We analyzed the challenge description to extract require-

ments and assigned a unique identifier to each one to fa-

cilitate their referencing. The analysis showed that some of

the requirements are not sufficiently precise or complete.

Cases where our interpretation of a requirement may deviate

from the authors’ intention are marked with an i. Additional
requirements that follow from the challenge but are not made

explicit there are marked with an a in table II. To structure the

analysis, we start with focusing on different product categories.

Subsequently, we will take a closer look at product details.

(1) Categorization of Products. The challenge distinguishes

between two principal kinds of products. On the one hand,

there are product exemplars (copies) that have an identity

of their own within the realm of the warehouse. We call

this kind of products identity product (R-1). An identifier

may be explicitly assigned, e.g., through a serial no., as it

is exemplified for a DVD player. On the other hand, the

warehouse does not keep track of individual exemplars in case

of Bulk products (R-2).

Bulk products and identity products represent special cases

of a more general notion of product (“adhere to the same

stipulation”) (R-3). Bulk products may be sold in packs. We

conclude this from the example of 10-pack batteries (R-4). We

also conclude from this example that packs of bulk products

(a) qualify as a specific kind of product and (b) do not have

an identity of their own in the realm of the warehouse (R-

5). Product copies and product specification types conform to

their respective types (R-6, R-7).

(2) Product Pricing. All products must be assigned a

standard sales price (SSP) (R-8). Identity products may have

assigned a reduced price that must be lower than the standard

price (R-9). All products of any kind may be assigned a

minimum price. This property should apply to identity and

bulk products alike. However, we assume that it relates to

660

the minimum standard price for bulk products (R-10) and the

minimum reduced price for identity products (R-11).

The currency used to specify any of the above prices is

defined at the level of a product specification type. Note that

this also covers the statement “Copies conforming to the same

product specification are always sold in the same currency”

(R-12). Price assignments should not use a currency different

from the one defined for their respective product specification

type (“type safe”) (R-13).

According to the challenge, each product specification type

defines a tax rate (R-14). The tax rate is the same for all

product specification types (15%), except for books (7%) (R-

14). We assume that these reference tax rates are subject to

change. The gross price (“final price”) of each product is the

standard or reduced price plus tax (R-16).

(3) Product Recommendations. Products may point to other

products to express recommendations. We assume that recom-

mendations of this kind are restricted to product specifications

(R-24). A product specification may only recommend other

product specifications if they have explicit clearance for this,

e.g., if they are compatible (R-25). Since a product should not

directly recommend itself, we add requirement (R-26).

(4) Warehouse Management. According to the challenge,

the warehouse “needs to keep track of the sum of all products

sold“. We regard this requirement as problematic for two

reasons. First, to keep track of sold amounts of bulk products,

one would need to introduce further concepts such as invoice,

invoice item, etc. We assume that these would be beyond the

scope of the warehouse. Second, while it would be possible

to mark objects representing specific exemplars of identity

products as sold, that would would create serious drawbacks.

To support a purposeful analysis of sold products, one would

have to add the date when a product was sold. Over time,

prices are likely to change. Therefore, one would also have

to store the corresponding price history. For these reasons we

took the liberty to interpret the requirement as follows: “The

warehouse needs to keep track of the value represented by the

products it stores, both at the product specification level (R-

17) and the product specification type level” (R-18). In case

of an identity product, the value of a particular exemplar is

determined by its final price. In case of a bulk product, the

value is given by the standard price times the amount in stock.

This requirement implies that for all bulk products the

amount in stock needs to be recorded. Since we assume

that not all bulk products are sold necessarily in packs, this

demands for recording both, the amount of unpacked bulk

products and the amount of bulk product packs (R-19).

The warehouse management system should be able to

“dynamically” add and remove product specification types

(R-21). The challenge states that “Product copies may have

properties such as ’open box’, ’accessories missing’, ’returned

on 23 March 2023”. We interpret this requirement as “It must

be possible to add properties for a more elaborate description

of product copies.” (R-22). This is a special, less demanding,

case of the previous requirement. It should be possible to keep

track of the date a new product specification type was added

(R-23).

(5) Focus on Particular Product Specifications. Among

others, the warehouse includes DVDs and books. According

to the challenge, a book copy is an instance of a book

specification that contains bibliographic data such as title

(and presumably the name(s) of the author(s) in order to

distinguish between two books that share the same title).

Furthermore a book specification should define a reference

currency and standard sales price. Similarly, a DVD containing

a movie is regarded as an instance of a DVD type that

includes the title of the represented movie. Note that taking

these requirements literally may lead to redundancy, e.g., a

paperback and a hardcover representing the same monograph

would both include a string to express the same title.

Note that we did not explicitly mention all examples in

the challenge, since they are not essential for addressing the

requirements. We hope that the solution is sufficiently clear

about how they are represented.

V. MODEL PRESENTATION

The following presentation is divided into four subsections.

First, we introduce generic domain classes that capture domain

knowledge at the highest level of abstraction (subsection V-A).

In the light of guideline G-1, we aim at addressing as many

requirements as possible in this subsection already. Thereafter,

we focus on the specific categories identity products (subsec-

tion V-B) and bulk products (subsection V-C). Finally, we

present a general warehouse management class that allows

for multiple kinds of warehouse analysis (subsection V-D).

Note that the description does not explicitly account for every

requirement. In cases where the satisfaction of a requirement

is obvious, we confine ourselves with its description in Table

III. With respect to space limitations, we cannot present the

specification of all constraints and operations.

In addition to this presentation, the complete and executable

model as well as a screencast that demonstrates its use are

available at https://le4mm.org/multi-23/. The XModelerML can

be downloaded from the webpages of our project LE4MM

[14].

A. Generic Domain Knowledge

The generic domain knowledge is represented by five

classes on L3 (see Fig. 1). Product specifies the properties

common to all kinds of products (R-3). The classes

IdentityProduct and NonIdentifiableProduct
are specialized from Product and represent generic

knowledge that distinguishes non identifiable products

(bulk products) from identity products. The class

NonIdentifiableProduct serves as abstract superclass

of the classes BulkProduct and BulkPackage, which

both have in common that they are not identifiable (this

is what we conclude from the challenge and the common

handling of products like battery packs). We will take a closer

look at this conceptualization below.

While it might, at first sight, appear to regard

IdentityProduct and NonIdentifiableProduct

661

TABLE II
LIST OF REQUIREMENTS

id Description
R-1 There are products, exemplars (copies) of which have

an identity of their own within the realm of the
warehouse.

R-2 There are also bulk products, for which the ware-
house does not keep track of individual exemplars.

R-3 Bulk products and identity products represent special
cases of a more general notion of product (“adhere
to the same stipulation”).

R-4 Bulk products may be sold in packs. i
R-5 Packs are bulk products, too. i
R-6 Product copies conform to a product specification).
R-7 Product specifications conform to a product specifi-

cation type.
R-8 All products must be assigned a SSP.
R-9 Identity products may have assigned a reduced price

which must be lower than the standard price.
R-10 Bulk products may be assigned a minimum price that

restricts their SSP.
i

R-11 In the case of identity products, the minimum prices
limits the reduced price.

i

R-12 A reference currency is defined with each product
specification type.

R-13 Currencies used for price assignment should be type
safe.

R-14 Each product specification type is assigned a tax rate.
R-15 There are only two different tax rates: either a

standard tax rate (15%) or a reduced tax rate (7%,
e.g., for books).

i

R-16 The final price of each product is its regular sales
price plus tax.

R-17 It should be possible to calculate the total value of
all products that conform to a product specification.

i

R-18 This should be possible, too, for all products that
conform to a product specification type.

i

R-19 The amount in stock needs to be recorded for bulk
products.

i

R-20 The warehouse needs to be able to iterate over all
copies and bulk products it currently has in stock
for inventory purposes.

R-21 The model should allow for adding new product
specification types.

R-22 It must be possible to add properties for a more
elaborate description of product copies.

i

R-23 The date a new product specification type was added
needs to be stored.

R-24 Product specifications can recommend other product
specifications.

R-25 Recommendation between product specifications are
only allowed if this was explicitly defined as possi-
ble.

R-26 Product specifications must not recommend them-
selves directly.

a

as concretizations of Product, a closer look shows that

there is no property defined by Product that is instantiated

within one of the two other classes. Therefore, regarding them

as concretizations of Product would violate guidelines G-5

and G-6.

An L2 descendant of Product, or one of its subclasses,

corresponds to a product specification type, an L1 descendant

to a product specification, and an L0 descendant to a particular

product copy. As a result, each product copy is an instance of

a product specification (R-6) and each product specification

is a concretization of a product specification type (R-7) This

allows us to add and remove product specification types as

concretizations of BulkProduct or BulkPackage (R-21).

Note that these modifications are, however, restricted to the

available classes on L3. We discuss this aspect in more detail

in the discussion section (see section VII).

The properties defined with Product allow for expressing

various kinds of prices that apply to product specifications (R-

8, R-10), as well as to the definition of a reference currency

R-12 (see below) and the date a product specification was

introduced (R-23).

For modeling currencies, the FMMLX provides the auxiliary

classes MonetaryValue and Currency. An object of the

class MonetaryValue contains an object of Currency
that represents a currency together with an amount that is

specified as Float. A particular currency is presented within

a diagram as a string, which is an element of an extensible

set of currency strings that follow ISO 4217. The class

MonetaryValue also provides for converting amounts from

one currency to another, which, e.g., allows for adding two

amounts together that are represented in different currencies.

The attribute currency of type Currency addresses re-

quirement R-12. This allows each L2 descendant of Product,
hence, each product specification type, to specify a different

currency. A currency string serves as a reference to a web

service that provides current exchange rates. The attribute

standardPrice in Product is instantiated on L1 and thus

enables each product specification to define a different SSP (R-

8). The intrinsic constraint CurrencyMatch1 in Product
ensures that the currency of each standardPrice on L1

corresponds to the currency specified in the respective product

specification type on L2 (R-13):

Context Product L1
@Constraint currencyMatch1

self.standardPrice.currency.abbreviation = self.of().
currency.abbreviation

fail
self.name + "’s price must be in " + self.of().currency
.abbreviation

end

Note that the class defined as the context of an intrinsic

constraint serves as an abstraction of the specific classes or

objects at the level the constraint applies to.

A reduced price can only be defined for product copies

(R-9). This requirement is addressed by the intrinsic at-

tribute reducedPrice with an instantiation level of 0

within the class IdentityProduct. The intrinsic constraint
reducedPriceSmaller defined in the same class ensures

that the reduced price defined on L0 is lower than the SSP

assigned on L1 (R-11):

Context IdentityProduct L0
@Constraint reducedPriceSmaller

i f self.reducedPrice = null
then true

e l s e
self.reducedPrice.getAmount() < self.of()
standardPrice.getAmountIn(self.reducedPrice.currency)

end
fail

"reducedPrice must be less than standardPrice"
end

662

The amount represented by a MonetaryValue value

is retrieved via the getAmount() function. It returns the

converted amount if the currencies do not match. Since

the definition of a reduced price should be optional (R-9),

the multiplicity of reducedPrice has a lower bound of

0 and the constraint reducedPriceSmaller must first

check whether the value of reducedPrice is null. Ad-
ditionally, we must ensure that if a value is provided for

reducedPrice on L0, it has the same currency as its

product specification type on L2, referred to by applying the

method of() twice (it returns the class of the corresponding

object) (R-13):

Context Product L1
@Constraint currencyMatch0

self.reducedPrice = null o r e l s e self.reducedPrice.
currency.abbreviation = self.of().of().currency.
abbreviation

fail
self.name + "’s price must be in " + self.of().of().

currency.abbreviation
end

The intrinsic attribute inStock defined with

NonIdentifiableProduct serves the representation

of amounts in stock (R-19) stored with bulk product types

at L1. In addition, it includes the intrinsic operations

priceAfterTax() and valueInStock() that address

requirements R-17 and R-16. IdentityProduct defines

the intrinsic attribute id (R-1).

While the classes IdentityProduct and

BulkProduct seem like obvious choices, the

conceptualization of packs is more demanding. We decided

to represent them by the class BulkPackage, which we

defined, like BulkProduct, as subclass of the abstract class
NonIdentifiableProduct. Packs are products and we

assumed that the warehouse does not keep track of single

packs, which makes them non identifiable in this context.

A pack is characterized by the number of pieces it contains

(attribute piecesPerPack). This conceptualization follows

the conjecture that bulk packages and the bulk items they

contain are different products, and, as such, might define

different values for attributes like introduced, taxType,
or standardPrice.

This conceptualization represents a simplified version of the

composite pattern, since we assume that packs can contain

bulk products only, not other packs. Note that, at this level we

cannot yet tell much about possible kinds of containment and

their properties such as cardinalities.

For tax rates, we distinguish between a 7% reduced tax

rate and a 15% standard tax rate. Following G-7, we assume

that further tax categories might be added in the future, so

a Boolean type cannot be used for this purpose. Instead,

we define an enumeration Tax, with the values NORMAL
and REDUCED, and add the attribute taxType: Tax in

Product to assign a tax type to a product specification type

on L2. These values are used in the operation taxRate(),
specified in Product. It returns the tax rate according to the

specified category and thus fulfills R-15 and R-14.

0..*

0..*

2

2
mayRecommend

0..*

0..*

1

1

recommends

^FMMLx::MetaClass^
3 BulkPackage

piecesPerPack: Integer[1]1
currency: Currency[1] (from Product)2
introduced: Date[1] (from Product)2
taxType: Tax[1] (from Product)2
inStock: Integer[1] (from NonIdentifiableProduct)1
minPrice: MonetaryValue[1] (from Product)1
standardPrice: MonetaryValue[1] (from Product)1

2 taxRate(): Float (from Product)
2 valueInStockType(): MonetaryValue (from Product)
1 priceAfterTax(): MonetaryValue (from NonIdentifiableProduct)
1 valueInStock(): MonetaryValue (from NonIdentifiableProduct)

^FMMLx::MetaClass^
3 BulkProduct

currency: Currency[1] (from Product)2
introduced: Date[1] (from Product)2
taxType: Tax[1] (from Product)2
inStock: Integer[1] (from NonIdentifiableProduct)1
minPrice: MonetaryValue[1] (from Product)1
standardPrice: MonetaryValue[1] (from Product)1

2 taxRate(): Float (from Product)
2 valueInStockType(): MonetaryValue (from Product)
1 priceAfterTax(): MonetaryValue (from NonIdentifiableProduct)
1 valueInStock(): MonetaryValue (from NonIdentifiableProduct)

^FMMLx::MetaClass^
3 Product

currency: Currency[1]2
introduced: Date[1]2
taxType: Tax[1]2
minPrice: MonetaryValue[1]1
standardPrice: MonetaryValue[1]1

2 taxRate(): Float
2 valueInStockType(): MonetaryValue

currencyMatch11
noCyclicRecs1
properRecommendation1
currencyMatch00

^FMMLx::MetaClass^
3 IdentityProduct

id: String[1]0
reducedPrice: MonetaryValue[0..1]0
currency: Currency[1] (from Product)2
introduced: Date[1] (from Product)2
taxType: Tax[1] (from Product)2
minPrice: MonetaryValue[1] (from Product)1
standardPrice: MonetaryValue[1] (from Product)1

1 valueInStock(): MonetaryValue
0 netPrice(): MonetaryValue
0 priceAfterTax(): MonetaryValue
2 taxRate(): Float (from Product)
2 valueInStockType(): MonetaryValue (from Product)

minimumPrice0
reducedPriceSmaller0

^FMMLx::MetaClass^
3 NonIdentifiableProduct

Attributes

Constraints

Specialization

Abstract Class

Instantiation Level

Level

Class name

Association

Association name

Multiplicity
Operations

Intrinsic Attribute

inStock: Integer[1]1
currency: Currency[1] (from Product)2
introduced: Date[1] (from Product)2
taxType: Tax[1] (from Product)2
minPrice: MonetaryValue[1] (from Product)1
standardPrice: MonetaryValue[1] (from Product)1

1 priceAfterTax(): MonetaryValue
1 valueInStock(): MonetaryValue
2 taxRate(): Float (from Product)
2 valueInStockType(): MonetaryValue (from Product)

minimumPrice1
noInstances1

Fig. 1. Product class with specializations on L3

Since the operation is defined only once in Product,
the tax rates can be updated and further tax categories can

be added with minimal effort. This avoids any redundant

specification of tax rates.

While the gross price of bulk products is computed di-

rectly by the operation priceAfterTax() specified within

NonIdentifiableProduct, calculating the final price of

an identity product requires to account for the reduced price,

if applicable:

Context IdentityProduct L0
@Operation netPrice():Auxiliary::MonetaryValue

i f self.reducedPrice = null
then self.of().standardPrice
e l s e self.reducedPrice
end

end

Based on this, the final price is calculated by the operation

priceAfterTax().
The accumulated value of products that belong to one

product specification (R-18) must also be calculated differ-

ently for bulk and identity products. For L1 descendants of

IdentityProduct, the accumulated value is calculated

by the intrinsic operation valueInStock() based on the

priceAfterTax() value returned by the L0 product copies

of a product specification (see below).

Context IdentityProduct L1

663

@Operation valueInStock():Auxiliary::MonetaryValue
l e t
sum = Auxiliary::MonetaryValue(0.0,self.of().currency)

in self.allInstances()→collect(i |
sum := sum.add(i.priceAfterTax()));

sum
end

end

For L1 descendants of NonIdentifiableProduct, the
sum is calculated based on the standardPrice value at L1

by the intrinsic operation valueInStock().
Computing the accumulated value of product specification

types (cf. R-18), however, does not require to distinguish

between identity and bulk products, since it makes poly-

morphic use of the two implemenations of the operation

valueInStock(). Therefore, the corresponding operation

can be defined in Product:

Context Product L2
@Operation valueInStockType():Auxiliary::MonetaryValue

l e t sum = Auxiliary::MonetaryValue(0.0,self.currency)
in self.allInstances()

→collect(i | sum := sum.add(i.valueInStock()));
sum

end
end

Further operations to calculate stock values are presented in

section V-D.

The intrinsic association recommends, which is to link

descendants of Product at L1, serves to fulfill requirement

R-24. The association alone, however, is not satisfactory,

since only products of a certain kind may be involved in

recommendations (cf. R-25). To address this requirement, we

define the association mayRecommends that enables to link a

product specification type with those product specification type

the descendants of which its descendants may recommmend.

The constraint properRecommendation checks whether

a recommends link on L1 is proper in the sense that the

corresponding ancestor product specification types on L2 are

connected via a mayRecommends link:

Context Product L1
@Constraint properRecommendation

self.getRecProducts()
→ f o r A l l(p1 | self.of().getRecommendableProducts()

→exists(p2 | p1.isKindOf(p2)))
fail

"Some recommended products must not be recommended"
end

The constraint noCyclicRecs in Product serves pre-

venting products from directly recommending themselves. (R-

26):

Context Product L1
@Constraint noCyclicRecs

not self.getRecProducts()→includes(self)
fail

"A product must not recommend itself."
end

Bulk products face additional modeling requirements that

can be addressed on L3, too. Requirement R-2 prohibits

the existence of bulk product exemplars in the ware-

house. Accordingly, the constraint noInstances within

NonIdentifiableProduct is to make sure that no bulk

products must exist at L0.

Context WarehouseManager
@Operation bulkValueInStock():Auxiliary::MonetaryValue

l e t sum = Auxiliary::MonetaryValue(0.0,Auxiliary::eur)
in @For p in Challenge23::BulkProduct.allMetaInstances()

→select(o | o.level = 1) do
sum := sum.add(p.priceAfterTax().mul(p.getInStock()))

end;
sum

end
end

The identityValueInStock() operation follows

the same principle. But here the descendants of

IdentityProduct on L0 are gathered and the

value returned by the operation priceAfterTax()
is accumulated. Both these operations are used in the

totalValueInStock() operation.

B. Identity Product Descendants

Most requirements concerning identity products are already

met by our specification of classes on L3 (see subsection V-A).

The class IdentityProduct can be used to concretize

product specification types on L2 which, in turn, can be used

to concretize product specifications on L1. These can then be

used to instantiate product copies on L0.

As we indicated already with the analysis of the require-

ments, the conceptualization of books and DVDs suggested

by the challenge may lead to redundancy. Also, from an

ontological perspective, there is an obvious difference between

a book as a physical artefact and the bibliographic artefact it

represents. After consulting with the workshop chairs we were

advised to follow the conceptualization suggested by the chal-

lenge. While this is certainly acceptable in order to simplify

matters, we are not comfortable with designing a model that

would violate principles we regard as relevant. Therefore, we

decided to develop two variants of the model, which are both

available for download at https://le4mm.org/multi-23/.

The default variant is a reflection of what is demanded by

the challenge authors. It provides for capturing both, properties

of the medium (book, DVD) and the represented content in

one product type specification (Book and DVD respectively).

Hence, the object representing a book type at L1 includes

pricemarks and the book title, where a reduced price maybe

defined with its instances. DVDs are represented accordingly.

The extended variant reflects the idea of distinguishing

between an intellectual artefact, such as a monograph or a

movie, and its representation in a book or on a DVD. It avoids

the redundancy issue described in section IV and corresponds

to the default variant as follows. According to the challenge,

Moby Dick is a Book Spec that classifies books that comprise

copies of Moby Dick. This is represented by the default variant

and would translate to “The book type Moby Dick Book

classifies books which represent the monograph Moby Dick.”

in the extended variant.

In the diagrams showing the model (Fig. 3 and Fig. 2),

the parts that were added to the default variant are covered

by semi-transparent areas. Note that the attributes title in

the classes Book and DVD as well as the corresponding slot

values in their concretizations are not required for the extended

664

variant. Accordingly, the identity product specification type

DVD and its descendants on L1 and L0 are described in the

default variant with the attribute title, while the extended

variant adds the class Movie.
The remaining identity products are shown in Fig. 2. The

object MobilePhone, which represents a product specifica-

tion type, provides reference values to attributes defined in

Product that have an instantiation level of 2. For example,

MobilePhone defines a currency with the slot currency
(cf. R-12) and an introduced date (cf. R-23). Some slots

are specific to descendants of IdentityProduct, like the

id slot in the L0 object mate08151 (cf. R-1).

In the following, we only describe a few exemplary objects

at L1 and L0. The models provided at https://le4mm.org/

multi-23/ include all objects and can be easily populated with

further instances.

Operations that are executed by these objects return the

respective value as defined in the classes Product or

IdentityProduct. The object mate08151 returns a net

price of 599.15 SEK which corresponds to the SSP in its

product specification Mate0815 because mate08151 does

not specify a reduced price.

C. Bulk Products and Bulk Packages

An example bulk product specification type from the case

description is shown in Fig. 3. BatteryCell is a concretiza-

tion of BulkProduct. BatteryPack is a concretization

of BulkPackage. The association containsBatteries,
defined between BatteryCell and BatteryPack, allows
battery cells to be contained in multiple package types – or

none at all. We also added some battery-specific attributes

to BatteryCell like voltage and recharchable.
BattSize is an enumeration that contains the values AA and

AAA.
Since both L1 objects, EnergeticPlus and

EnergeticPlus_Pack10 are descendants of Product,
they must both provide values for the different pricing

attributes. They therefore define an SSP, which is

1.50 NZD for EnergeticPlus and 12.00 NZD for

EnergeticPlus_Pack10. The SSP of EnergeticPlus
corresponds to the price value of a single battery cell.

D. Warehouse Management Class

While objects on L2, which represent product specification

types, can iterate all objects within their respective concretiza-

tion tree, no class could iterate all product objects. Therefore,

the iteration of all product objects (cf. R-20) is realized

through a separate WarehouseManager class (see Fig. 4).

We calculate the total value of products in the warehouse

by first determining the value of bulk products and identity

products separately and then adding both together.

The operation bulkValueInStock() initializes a vari-

able sum of type MonetaryValue at 0.0 EUR. Then, all
L1 descendants of NonIdentifiableProduct are iter-

ated and, for each, the value returned by priceAfterTax()
is multiplied by the number of pieces in stock. This value is

accumulated in the sum variable, where add converts any

MonetaryValue to the initialized currency EUR.

VI. MODEL EVALUATION AGAINST REQUIREMENTS

We consider each requirement shown in table II as satisfied

by our solution. Note that some requirements deviate from the

original case description as discussed in section IV. Table III

summarizes how the requirements were addressed.

VII. DISCUSSION

Although we believe that our solution satisfies the require-

ments of the challenge, a closer look at the solution re-

veals certain limitations. The following discussion of principle

strengths and possible limitations accounts for the aspects

suggested by the challenge except for two: We described and

elucidated the basic modeling constructs in section V and

outlined how class levels are created technically in section

II.

A. Reuse, Adaptability, and Integrity

The rationale for deciding what level a class should be

assigned to (“rationale for assigning elements to levels”) is

reflected in guidelines G-1, G-2, G-3, and G-5. Applying

these guidelines is not trivial, though. It requires substantial

knowledge of the domain to decide which of its characteristic

properties are likely to be invariant over time, and – of course

– there is no way of proving that. If the guideline is applied

properly (which is, again, not trivial to tell), it will enable an

appropriate “balance between prescriptiveness and variability,”

as it is mentioned in the challenge. If classes at higher levels

and their relationships to classes at lower levels are invariant

also in the light of new requirements, a corresponding model

will support convenient adaptations that maintain the model’s

integrity.

In that case, adding and removing properties at higher levels

will lead to consistent updates of affected elements at lower

levels. Due to the fact that the XModelerML does not support

static typing, not every modification can be performed without

user interaction. While the design of the solution we present

in this paper is solely aimed at fulfilling the requirements

of the challenge, a comprehensive evaluation of the model

recommends accounting for possible future changes. At first,

this relates to changes that may occur within the specific

focus of the challenge. It may, for example, happen that

bulk products turn into identity products if the costs caused

by distinguishing particular exemplars decrease the additional

benefit keeping track of every exemplar. Within the current

solution, this would require a major change since it would

likely involve class migration or a reconstruction of the entire

multi-level hierarchy.

With respect to selling representations of artifacts such as

movies or monographs, it is likely that other representations

such as streaming as well as corresponding pricing models will

have to be accounted for at some point. Also, certain products

may be bundled with others. For example, batteries may be

part of electric devices. In that case, there will be no price

665

mayRecommend

recommends

represents

writtenBy

1..*
1

1
0represents

0..1

1..*

0

0

writtenBy

^FMMLx::MetaClass^
1 Monograph

edition: Integer[1]0
firstPublished: Date[1]0
title: String[1]0

^HardCover^
0 hardCover1

id = K893
reducedPrice = 8.99 EUR
soldOn = 17 May 2023

netPrice()-> 8.99 EUR
priceAfterTax()-> 9.62 EUR

^MobilePhone^
1 Mate0815

id: String[1] (from IdentityProduct)0
reducedPrice: MonetaryValue[0..1] (from IdentityProduct)0

0 netPrice(): MonetaryValue (from IdentityProduct)
0 priceAfterTax(): MonetaryValue (from IdentityProduct)

minPrice = 239.66 SEK
standardPrice = 599.15 SEK

valueInStock()-> 689.02 SEK

^IdentityProduct^
2 MobilePhoneCase

minPrice: MonetaryValue[1] (from Product)1
standardPrice: MonetaryValue[1] (from Product)1
id: String[1] (from IdentityProduct)0
reducedPrice: MonetaryValue[0..1] (from IdentityProduct)0

1 valueInStock(): MonetaryValue (from IdentityProduct)
0 netPrice(): MonetaryValue (from IdentityProduct)
0 priceAfterTax(): MonetaryValue (from IdentityProduct)

currency = Currency<SEK>
introduced = 05 Jun 2007
taxType = NORMAL

taxRate()-> 0.15
valueInStockType()-> 20.64 SEK

^FMMLx::MetaClass^
1 Author

firstName: String[1]0
lastName: String[1]0

^Matey^
0 mat1

id = mat44882
reducedPrice = null

netPrice()-> 17.95 SEK
priceAfterTax()-> 20.64 SEK

^IdentityProduct^
2 MobilePhone

minPrice: MonetaryValue[1] (from Product)1
standardPrice: MonetaryValue[1] (from Product)1
id: String[1] (from IdentityProduct)0
reducedPrice: MonetaryValue[0..1] (from IdentityProduct)0

1 valueInStock(): MonetaryValue (from IdentityProduct)
0 netPrice(): MonetaryValue (from IdentityProduct)
0 priceAfterTax(): MonetaryValue (from IdentityProduct)

currency = Currency<SEK>
introduced = 04 May 2006
taxType = NORMAL

taxRate()-> 0.15
valueInStockType()-> 689.02 SEK

^Author^
0 a3_Author

firstName = Ian
lastName = McEwan

^MobilePhoneCase^
1 Matey

id: String[1] (from IdentityProduct)0
reducedPrice: MonetaryValue[0..1] (from IdentityProduct)0

0 netPrice(): MonetaryValue (from IdentityProduct)
0 priceAfterTax(): MonetaryValue (from IdentityProduct)

minPrice = 7.18 SEK
standardPrice = 17.95 SEK

valueInStock()-> 20.64 SEK

^Monograph^
0 McEwan_Amsterdam

edition = 1
firstPublished = 01 May 2002
title = Amsterdam

^Mate0815^
0 mate08151

id = MZ200
reducedPrice = null

netPrice()-> 599.15 SEK
priceAfterTax()-> 689.02 SEK

^IdentityProduct^
2 Book

copyType: CopyType[1]1
pages: Integer[1]1
title: String[1]1
soldOn: Date[1]0
minPrice: MonetaryValue[1] (from Product)1
standardPrice: MonetaryValue[1] (from Product)1
id: String[1] (from IdentityProduct)0
reducedPrice: MonetaryValue[0..1] (from IdentityProduct)0

1 title(): String
1 valueInStock(): MonetaryValue (from IdentityProduct)
0 netPrice(): MonetaryValue (from IdentityProduct)
0 priceAfterTax(): MonetaryValue (from IdentityProduct)

currency = Currency<EUR>
introduced = 12 May 2021
taxType = REDUCED

taxRate()-> 0.07
valueInStockType()-> 20.31 EUR

^Book^
1 HardCover

id: String[1] (from IdentityProduct)0
reducedPrice: MonetaryValue[0..1] (from IdentityProduct)0
soldOn: Date[1] (from Book)0

0 netPrice(): MonetaryValue (from IdentityProduct)
0 priceAfterTax(): MonetaryValue (from IdentityProduct)

copyType = hard
minPrice = 7.99 EUR
pages = 238
standardPrice = 9.99 EUR
title = Amsterdam

title()-> Amsterdam
valueInStock()-> 20.31 EUR

^HardCover^
0 hardCover2

id =
reducedPrice = null
soldOn = null

netPrice()-> 9.99 EUR
priceAfterTax()-> 10.69 EUR

1 title(): String

title()-> Amsterdam

represents

writtenBy

1..*
1

1
0represents

0..1

1..*

0

0

writtenBy

^FMMLx::MetaClass^
1 Monograph

edition: Integer[1]0
firstPublished: Date[1]0
title: String[1]0

^FMMLx::MetaClass^
1 Author

firstName: String[1]0
lastName: String[1]0

^Author^
0 a3_Author

firstName = Ian
lastName = McEwan

^Monograph^
0 McEwan_Amsterdam

edition = 1
firstPublished = 01 May 2002
title = Amsterdam

extended Variant

Fig. 2. Descendants of IdentityProduct

recommendscontainsBatteries

mayRecommend

hasContent

0..*1

11 containsBatteries

0..*

0..1

1

0

hasContent

^haChi779^
0 dVD_3001

id = s493
reducedPrice = null

netPrice()-> 99.99 USD
priceAfterTax()-> 114.99 USD

^IdentityProduct^
2 DVD_Player

hdmi: Boolean[1]1
mobile: Boolean[1]1
resolution: Integer[1]1
upscaling: Boolean[1]1
minPrice: MonetaryValue[1] (from Product)1
standardPrice: MonetaryValue[1] (from Product)1
id: String[1] (from IdentityProduct)0
reducedPrice: MonetaryValue[0..1] (from IdentityProduct)0

1 valueInStock(): MonetaryValue (from IdentityProduct)
0 netPrice(): MonetaryValue (from IdentityProduct)
0 priceAfterTax(): MonetaryValue (from IdentityProduct)

currency = Currency<USD>
introduced = 03 Apr 2005
taxType = NORMAL

taxRate()-> 0.15
valueInStockType()-> 114.99 USD

^DVD_Player^
1 haChi779

id: String[1] (from IdentityProduct)0
reducedPrice: MonetaryValue[0..1] (from IdentityProduct)0

0 netPrice(): MonetaryValue (from IdentityProduct)
0 priceAfterTax(): MonetaryValue (from IdentityProduct)

hdmi = false
minPrice = null
mobile = false
resolution = 0
standardPrice = 99.99 USD
upscaling = false

valueInStock()-> 114.99 USD

^FMMLx::MetaClass^
1 Movie

length: Integer[1]0
produced: Date[1]0
title: String[1]0

^SpaceOdyssee^
0 SpO1

id = so8295
reducedPrice = null

netPrice()-> 19.95 USD
priceAfterTax()-> 22.94 USD

^Movie^
0 SpOd

length = 120
produced = 01 May 2001
title = Space Odyssey

^BulkPackage^
2 BatteryPack

inStock: Integer[1] (from BulkProduct)1
minPrice: MonetaryValue[1] (from Product)1
piecesPerPack: Integer[1] (from BulkPackage)1
standardPrice: MonetaryValue[1] (from Product)1

1 priceAfterTax(): MonetaryValue (from BulkProduct)
1 valueInStock(): MonetaryValue (from BulkProduct)

currency = Currency<NZD>
introduced = 06 Jul 2008
taxType = NORMAL

taxRate()-> 0.15
valueInStockType()-> 375111.60 NZD

^BulkProduct^
2 BatteryCell

capacity: Float[1]1
manufacturer: String[1]1
rechargable: Boolean[1]1
size: BattSize[1]1
voltage: Float[1]1
inStock: Integer[1] (from BulkProduct)1
minPrice: MonetaryValue[1] (from Product)1
standardPrice: MonetaryValue[1] (from Product)1

1 energy(): Float
1 priceAfterTax(): MonetaryValue (from BulkProduct)
1 valueInStock(): MonetaryValue (from BulkProduct)

currency = Currency<NZD>
introduced = 06 Jul 2008
taxType = NORMAL

taxRate()-> 0.15
valueInStockType()-> 0.00 NZD

^BatteryPack^
1 EnergeticPlus_Pack10

inStock = 27182
minPrice = 11.40 NZD
piecesPerPack = 10
standardPrice = 12.00 NZD

priceAfterTax()-> 13.80 NZD
valueInStock()-> 375111.60 NZD

^BatteryCell^
1 EnergeticPlus

capacity = 1.25
inStock = 0
manufacturer = Batteriewerk Duisburg-Essen
minPrice = 1.35 NZD
rechargable = false
size = AA
standardPrice = 1.50 NZD
voltage = 1.5

energy()-> 1.875
priceAfterTax()-> 1.72 NZD
valueInStock()-> 0.00 NZD

meta-class name

Slot Values

Operation
Values

Link

Derived Properties
in gray

extended Variant

Link name

Arrows indicate
navigability

^IdentityProduct^
2 DVD

capacity: Integer[1]1
protected: Boolean[1]1
resolution: Integer[1]1
title: String[1]1
minPrice: MonetaryValue[1] (from Product)1
standardPrice: MonetaryValue[1] (from Product)1
id: String[1] (from IdentityProduct)0
reducedPrice: MonetaryValue[0..1] (from IdentityProduct)0

1 title(): String
1 valueInStock(): MonetaryValue (from IdentityProduct)
0 netPrice(): MonetaryValue (from IdentityProduct)
0 priceAfterTax(): MonetaryValue (from IdentityProduct)

currency = Currency<USD>
introduced = 02 Mar 2004
taxType = NORMAL

taxRate()-> 0.15
valueInStockType()-> 22.94 USD

^DVD^
1 SpaceOdyssee

id: String[1] (from IdentityProduct)0
reducedPrice: MonetaryValue[0..1] (from IdentityProduct)0

0 netPrice(): MonetaryValue (from IdentityProduct)
0 priceAfterTax(): MonetaryValue (from IdentityProduct)

capacity = 0
minPrice = 17.99 USD
protected = false
resolution = 0
standardPrice = 19.95 USD
title = SpaceOdysee

title()-> Space Odyssey
valueInStock()-> 22.94 USD

hasContent

^Movie^
0 SpOd

length = 120
produced = 01 May 2001
title = Space Odyssey

0..1

0

^FMMLx::MetaClass^
1 Movie

length: Integer[1]0
produced: Date[1]0
title: String[1]0

1 title(): String

title()-> Space Odyssey

0..*

1 hasContent

Fig. 3. Remaining descendants of NonIdentifiableProduct and IdentityProduct

assigned to them. Second, related to requirement R-23, adding

new product types may require additional classes at the level of

NonIdentifiableProduct and IdentityProduct,
e.g., for perishable foods that need to be refrigerated or

for financial products. Furthermore, other product types may

require configuration, e.g., picking colours, materials, or extra

features. This may lead to the need for additional levels, which,

in turn, may require contingent level classes [16].

666

TABLE III
SUMMARY OF IMPLEMENTATION OF REQUIREMENTS

ID Comment
R-1 Each product copy is represented by an L0 object.
R-2 The constraint noInstances in

NonIdentifiableProduct prevents the creation of
bulk products at L0.

R-3 The class Product defines common properties of all kinds
of products.

R-4 represented by associations between descendants of
BulkProduct and ProductPackage

R-5 The class BulkPackage is specialized from
NonIdentifiableProduct.

R-6 ensured by descendants of IdentityProduct on L1, all
product copies are instantiated from

R-7 ensured by the classes at L2 all classes representing product
specifications are concretized from

R-8 satisfied by the intrinsic attribute standardPrice in
Product

R-9 satisfied by the intrinsic constraint
reducedPriceSmaller in IdentityProduct

R-10 satisfied by the intrinsic attribute minPrice in Product
and the constraint minimumPrice in
NonIdentifiableProduct

R-11 satisfied by the intrinsic attribute minPrice in Product
and the constraint minimumPrice in
IdentityProduct

R-12 addressed through the intrinsic attribute currency within
the class Product

R-13 satified by the intrinsic constraints CurrencyMatch1,
specified in Product and the constraint
CurrencyMatch0, specified in Product

R-14 The operation taxRate(), specified in the L3 object
Product, returns the respective tax rate for each tax type
assigned (see below).

R-15 addressed by adding the enumeration type Tax that contains
the values NORMAL and REDUCED and the attribute
taxType: Tax in Product.

R-16 The intrinsic operation priceAfterTax(), separately
specified in IdentityProduct and
NonIdentifiableProduct, calculates the final price
for L0 identity product objects and L1 bulk product objects.

R-17 satisfied by the two incarnations of the intrinsic operation
valueInStock within the classes IdentityProduct
and NonIdentifiableProduct

R-18 satisfied by the the operation valueInStock within the
class Product

R-19 The intrinsic operation priceAfterTax(), separately
specified in IdentityProduct and
NonIdentifiableProduct, calculates the final price
for L0 identity product objects and L1 bulk product objects.

R-20 demonstrated by the the operations
bulkValueInStock(), identityValueInStock(),
and totalValueInStock() defined in the class
WarehouseManager

R-21 can be done through multiple concretizations of the classes
IdentityProduct, BulkProduct, and
BulkPackage

R-22 The intrinsic operation priceAfterTax(), separately
specified in IdentityProduct and
NonIdentifiableProduct, calculates the final price
for L0 identity product objects and L1 bulk product objects.

R-23 satisfied by intrinsic attribute introduced in the class
Product

R-24 addressed by the association recommends
R-25 The compatability of recommendation association is ensured

through two modeling concepts. The association
mayRecommend serves the specification of allowed
recommendations. In addition, the constraint
properRecommendations ensures that
recommendations can be made only that were approved for
the respective product specifcation types.

R-26 The constraint noCyclicRecs ensures that L1
descendants of Product cannot recommend themselves.

^FMMLx::MetaClass^
1 WarehouseManager

0 bulkValueInStock(): MonetaryValue
0 identityValueInStock(): MonetaryValue
0 totalValueInStock(): MonetaryValue

^WarehouseManager^
0 warehouseManager

bulkValueInStock()-> 212600.08 EUR
identityValueInStock()-> 195.90 EUR
totalValueInStock()-> 212795.98 EUR

Fig. 4. WarehouseManager class on L1 and instance on L0

In general, the effort and risk related to changing a multi-

level model widely depend on how well guidelines 1-3 had

been followed. If these guidelines are satisfied, changing a

model benefits from the tight dependencies between levels. If

that is not the case, these dependencies turn into a serious

disadvantage.

B. Further Aspects of Abstraction

The proposed solution clearly illustrates the benefit of

the additional abstraction enabled by a multi-level modeling

language like the FMMLX. A closer look, however, shows

that there is still room for improvement. At first, this concerns

additional languages constructs.

Our solution satisfies the requirement that a product speci-

fication may only recommend others to which it is entitled to

R-25) by defining two associations and a constraint. However,

since the specification of such a constraint is not trivial and

this kind of dependency between two associations – where

the dependent association is restricted to objects the classes

of which are linked through instantiations of the independent

association – is common, we consider adding a specific con-

cept to the FMMLX as it is already provided by the LML and

Melanee [22]. In this case, the implementation would be built

on the generic pattern all corresponding constraints are based

on. The convenient application of this concept recommends

enhancing the concrete syntax of the FMMLX – for example

by using a directed edge between the edges representing the

respective associations. For a more comprehensive discussion

of associations in multi-level models see [26].

It also inspired us to reconsider our view on potencies. To

express at a higher level already that a class of a certain kind at

a lower level must not be instantiated, the FMMLX requires the

specification of a constraint, while this would not be required

for the use of potencies.

Two further extensions of the language are clearly more

demanding. At first, they concern concepts that enable abstrac-

tions of associations, e.g., by allowing for the specification of

association (meta) types including the deferred instantiation of

cardinalities. In addition, concepts that support dynamic ab-

straction would not only be extremely beneficial for modeling

processes, but also for the specification of operations within

classes. In these cases, one often sees commonalities but lacks

the concepts to express these concisely.

C. Comprehensibility

As far as the comprehensibility of the model in general,

and specifically of modeling constructs such as operations

and constraints are concerned, we are reluctant to offer an

667

assessment. Even though there is still room for improvements,

we are fairly satisfied with the FMMLX and XModelerML. But

our view is certainly biased. While it is sometimes argued that

multi-level models are difficult to understand, because people

tend to struggle with abstraction, our extensive work with the

construction of corresponding models and languages, as well

as the experience we gathered with teaching MLM, indicate

that the concepts represented in multi-level models are often

perceived as more natural than the workarounds required in

the traditional modeling paradigm. We think that the model

presented here confirms this observation. Nevertheless, the

specification of operations and constraints with the XOCL

require some programming knowledge, as well as knowledge

of the OCL.

VIII. CONCLUSION

The MULTI 2023 Warehouse Challenge proved to be a

useful test case for us. It is suited to demonstrate the expressive

power of the FMMLX and the utility of a development and

execution environment like the XModelerML. At the same time,

it served us to reconsider a few design decisions previously

made with the specification of the FMMLX, which will likely

lead to two specific extensions of the language.

Due to the nature of the MULTI challenge, only a small

range of products was accounted for. While respective so-

lutions should be suited to convincingly show the specific

advantage of multi-level language architectures, models that

cover a wide variety of products would allow for more

impressively demonstrating the power of multi-level modeling

and corresponding tools. While such a project would likely

exceed the capabilities of single research groups, it may be an

inspiring subject of an “open model” [15] project carried out

by the MLM community.

REFERENCES

[1] Colin Atkinson, Bastian Kennel, and Björn Goß. The Level-Agnostic
Modeling Language. In Brian Malloy, Steffen Staab, and Mark van den
Brand, editors, Software Language Engineering, pages 266–275, Berlin,
Heidelberg, 2011. Springer Berlin Heidelberg.

[2] Colin Atkinson and Thomas Kühne. Processes and Products in a Mul-
tiLevel Metamodeling Architecture. International Journal of Software
Engineering and Knowledge Engineering, 11(06):761–783, 2001.

[3] Colin Atkinson and Thomas Kühne. Rearchitecting the UML infras-
tructure. ACM Transactions on Modeling and Computer Simulation
(TOMACS), 12(4):290–321, 2002.

[4] Victorio A Carvalho, João Paulo A Almeida, Claudenir M Fonseca,
and Giancarlo Guizzardi. Extending the Foundations of Ontology-
based Conceptual Modeling with a Multi-Level Theory. In Conceptual
Modeling: 34th International Conference, ER 2015, Stockholm, Sweden,
October 19-22, 2015, Proceedings 34, pages 119–133. Springer, 2015.

[5] Tony Clark, Paul Sammut, and James Willans. Applied Metamodelling;
A Foundation for Language Driven Development, 2nd ed. Sheffield:
Ceteva, 2008. https://arxiv.org/pdf/1505.00149.pdf.

[6] Tony Clark, Paul Sammut, and James Willans. Developing Languages
and Applications with XMF. Sheffield: Ceteva, 2008. https://arxiv.org/
pdf/1506.03363.pdf.

[7] Tony Clark and James Willans. Software language engineering with
XMF and XModeler. In Formal and practical aspects of domain-specific
languages: recent developments, pages 311–340. IGI Global, 2013.

[8] Juan de Lara and Esther Guerra. Deep Meta-modelling with MetaDepth.
In Jan Vitek, editor, Objects, Models, Components, Patterns, pages 1–20,
Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

[9] Ulrich Frank. Domain-Specific Modeling Languages: Requirements
Analysis and Design Guidelines. Domain engineering: Product lines,
languages, and conceptual models, pages 133–157, 2013.

[10] Ulrich Frank. Multilevel Modeling: Toward a New Paradigm of
Conceptual Modeling and Information Systems Design. Business &
Information Systems Engineering, 6(6):319–337, 2014.

[11] Ulrich Frank. Designing Models and Systems to Support IT Manage-
ment: A Case for Multilevel Modeling. In MULTI@ MoDELS, pages
3–24, 2016.

[12] Ulrich Frank. Flexible Multi-Level Modelling and Execution Language
(FMMLx): Version 2.0: Analysis of Requirements and Technical Ter-
minology. Technical Report 66, ICB-Research Report, 2018.

[13] Ulrich Frank. Prolegomena of a Multi-Level Modeling Method Illus-
trated with the FMMLx. In 2021 ACM/IEEE International Conference
on Model Driven Engineering Languages and Systems Companion
(MODELS-C), pages 521–530. IEEE, 2021.

[14] Ulrich Frank and Tony Clark. Language Engineering for Multi-Level
Modeling (LE4MM): A long-term Project to Promote the Integrated
Development of Languages, Models and Code. In Jaime Font, Lorena
Arcega, José Fabián Reyes Román, and Giovanni Giachetti, editors,
Proceedings of the Research Projects Exhibition Papers Presented at
the 35th International Conference on Advanced Information Systems
Engineering (CAiSE 2023), Zaragoza, Spain, June 12-16, 2023, volume
3413 of CEUR Workshop Proceedings, pages 97–104. CEUR-WS.org,
2023.

[15] Ulrich Frank and Stefan Strecker. Open Reference Models –
Community-driven Collaboration to Promote Development and Dissem-
ination of Reference Models. Enterprise Modelling and Information
Systems Architectures, 2(2):32–41, 2007.

[16] Ulrich Frank and Daniel Töpel. Contingent Level Classes: Motivation,
Conceptualization, Modeling Guidelines, and Implications for Model
Management. In Esther Guerra and Ludovico Iovino, editors, Proceed-
ings of the 23rd ACM/IEEE International Conference on Model Driven
Engineering Languages and Systems: Companion Proceedings, pages
622–631, New York, NY, USA, 2020.

[17] Manfred Jeusfeld and Christoph Quix. Meta modeling with Concept-
Base. In Proceedings of the 1st International Workshop on Meta
Modeling and Corresponding Tools (WoMM 2005). University of Essen,
2005.

[18] Gabor Karsai, Holger Krahn, Claas Pinkernell, Bernhard Rumpe, Martin
Schindler, and Steven Völkel. Design Guidelines for Domain Specific
Languages. arXiv preprint arXiv:1409.2378, 2014.

[19] Thomas Kühne. Tiefe Charakterisierung. In Proceedings of Model-
lierung 2004, pages 121–133, 2004.

[20] Thomas Kühne and Daniel Schreiber. Can Programming be Liberated
from the Two-Level Style? Multi-Level Programming with DeepJava. In
Proceedings of the 22nd annual ACM SIGPLAN conference on Object-
oriented programming systems, languages and applications, pages 229–
244, 2007.

[21] Thomas Kühne and Manfred Jeusfeld. The MULTI Warehouse
Challenge. https://jku-win-dke.github.io/MULTI2023/files/MULTI%
20Warehouse%20Challenge.pdf. Accessed: 2023-05-21.

[22] Arne Lange and Colin Atkinson. Multi-level modeling with MELANEE.
In MoDELS (Workshops), pages 653–662, 2018.

[23] Fernando Macias Gomez de Villar, Adrian Rutle, and Volker Stolz.
MultEcore: Combining The Best of Fixed-Level and Multilevel Meta-
modelling. In MULTI 2016: Proceedings of the 3rd International
Workshop on Multi-Level Modelling co-located with ACM/IEEE 19th
International Conference on Model Driven Engineering Languages &
Systems (MoDELS 2016), pages 66–75, 2016.

[24] Bernd Neumayr, Katharina Grün, and Michael Schrefl. Multi-Level
Domain Modeling with M-Objects and M-Relationships. In Proceedings
of the Sixth Asia-Pacific Conference on Conceptual Modeling-Volume 96,
pages 107–116. Citeseer, 2009.

[25] Zoltan Theisz and Gergely Mezei. An Algebraic Instantiation Technique
Illustrated by Multilevel Design Patterns. In MULTI@MoDELS, pages
53–62, 2015.

[26] Daniel Töpel. Associations in Multi-Level-Modelling: Motivation,
Conceptualization, Modelling Guidelines, and Implications for Model
Management. In 2021 ACM/IEEE International Conference on Model
Driven Engineering Languages and Systems Companion (MODELS-C),
pages 502–510. IEEE, 2021.

668

