
Comparing LML and FMMLx

A contribution to the MULTI Collaborative Comparison challenge

Arne Lange∗, Ulrich Frank†, Colin Atkinson∗, Daniel Töpel†,
∗ University of Mannheim, Mannheim, Germany
† University of Duisburg-Essen, Essen, Germany

Abstract—This paper contributes to the series of comparisons
called for by the MULTI Collaboration Challenge by comparing
the LML and FMMLx multi-level modeling (MLM) languages as
well as their associated constraint languages. The two languages
are particularly suitable for comparison because they are among
the most mature MLM approaches, with rich language concepts
and powerful modeling tools. Besides obvious similarities, they
have a number of differences, some of which only become appar-
ent through closer analysis. The paper applies the well-known
challenge in full but adds a small number of further requirements
to highlight the special features of the two approaches. Based on
an analysis of the requirements, the solutions are presented and
then analyzed by comparison. The analysis shows that there is
a considerable overlap in the modeling strategies adopted by
the two approaches, but each has specific features that allow
particularly concise and elegant solutions in some cases, and the
use of workarounds in others.

Index Terms—Multi-level modeling, Challenge, LML, FMMLx

I. INTRODUCTION

This paper is a contribution to the MULTI Collaborative
Challenge first published for the 2021 MULTI workshop. Like

the MULTI Challenge, its goal is to foster a better understand-

ing of current approaches to multi-level modeling (MLM). To

this end, it takes an approach that differs in two ways from

the MULTI Challenge, which is limited to the presentation

of solutions created with a single approach. First, the MULTI

Collaborative Challenge requires a comparison of two selected

approaches and a thorough analysis of the corresponding

solutions. Second, it requires close cooperation between the

developers of the selected approaches. This not only avoids

misunderstandings but also emphasizes the commitment to

strengthening the community.

The two multi-level languages compared in this paper

are the Level-agnostic Modeling Language (LML) and the

Flexible Multi-Level Modeling and Execution Language

(FMMLx)1. The two approaches that have developed around

these languages are well-suited for comparison because, on

the one hand, they are similar and incorporate many of the

same language design choices, and on the other hand, they

have numerous features that differ with respect to concepts

and terminology. Some differences are obvious and easy to

understand while others are more subtle. Both approaches are

1Note that an early version of the language was called “Flexible Meta-
Modeling and Execution Language” [9]

supplemented by powerful constraint languages and mature

modeling tools. While both tools support the design and

maintenance of multi-level models, they are based on different

design philosophies.

The paper is structured according to the required outline

in the Challenge. First, we give an overview of the two

approaches. Subsequently, we present the requirements that

characterize the challenge. Against this background, each of

the two solutions is then introduced step by step and then

evaluated against the requirements. Finally, we discuss options

for cross-fertilizing and mutually evolving the two approaches.

II. MODELING APPROACHES

Since both approaches have been extensively described in

various publications already, in this section we only provide

brief overviews of their main features and principles that

should be sufficient to follow the subsequent presentation of

the solutions.

A. LML and Melanee

The LML is built around the principle of separating ontolog-

ical classification, which captures the instance-of relationships

existing in the modeled domain, from linguistic classification,

which captures how model elements are represented syntacti-

cally. This separation is captured in the form of the Orthogonal

Classification Architecture (OCA) in which a linguistic meta-

model spans a space (i.e., linguistic level) containing multiple

ontological classification levels.

LML’s approach to MLM can be characterized as deep and

strict. LML is deep because it supports deep characterization

(the ability to define attributes or methods across multiple

levels [3]) through a mechanism referred to as “deep instan-

tiation”. This is supported by the notion of potency, a non-

negative integer value associated with clabjects that control the

ability of their instances to have instances, over an arbitrary

number of levels. If a clabject’s potency value is “0” then that

clabject cannot have any direct instances (although it can have

indirect instances through generalization/inheritance). Usually,

such clabjects are individuals, i.e. objects that represent the

most concrete things in a domain. In some cases, such clabjects

are also abstract clabjects but they have to be part of a

generalization set and must not be a leaf in that hierarchy [13].

Attributes and methods have similar vitality properties, called

669

2023 ACM/IEEE International Conference on Model Driven Engineering Languages and Systems Companion (MODELS-C)

979-8-3503-2498-3/23/$31.00 ©2023 IEEE
DOI 10.1109/MODELS-C59198.2023.00108

durability and mutabiltity, that control a clabject’s intension

in the classification hierarchy.

LML is strict because every clabject occupies a level, and

the kinds of relationships that cross levels are limited. In

particular, if a clabject, x, is a direct instance of a clabject

at level Mn, x must be at level Mn−1 [1]. Not all clabjects

have to have ontological types, however. Clabjects at the most

abstract level are by definition not ontological instances of any

other types, and so-called linguistic extensions [7], which are

clabjects introduced as types at levels below the most abstract

level, do not have an ontological type.

The LML is supported by a variant of OCL, called Deep

OCL (DOCL), which has been enhanced with features to sup-

port deep modeling. In particular, DOCL is aware of the two

classification dimensions in the OCA and provides features to

support both linguistic and ontological introspection. It is also

aware of the multiple levels that can exist in the ontological

dimension and provides features to allow constraints to span

specified ranges of levels.

Both languages are supported by the Melanee multi-level

modeling tool developed at the University of Mannheim [2].

B. The FMMLx and the XModelerML

The FMMLx comes with a corresponding modeling and

execution environment, the XModelerML , and guidelines for

MLM. Together with the FMMLx , the latter form a compre-

hensive multi-level modeling method.

The FMMLx and the XModelerML resulted from the long-

term, still ongoing project Language Engineering for Multi-
Level Modeling (LE4MM, https://le4mm.org) (for a more

comprehensive account of the project’s history see [11]).

On the one hand, this approach is based on extensive re-

search on language engineering which has led to the realization

of a comprehensive language engineering environment, the

XModeler, which is based on the reflexive “golden braid”

metamodel XCore [6], [5]. On the other hand, the approach

was driven by work on the development of domain-specific

languages (DSML) and corresponding tools, especially in the

area of enterprise modeling and enterprise systems.

In contrast, the common representation of models and

programs enabled by the XModelerML obviates the need for

mutual synchronization and empowers users to change parts

of the system they work with, by modifying a model designed

in a DSML they are familiar with.

1) The FMMLx : While XCore allows for multiple classi-

fication levels (every class created with XCore inherits from

the XCore class Class), it does not directly support explicit

levels or deferred instantiation. The FMMLx is defined as a

monotonic extension of XCore. All classes specified with the

FMMLx are objects, since Class inherits from Object. Every

object in a FMMLx model is assigned a level, where L0 (“L” is

the abbreviation of level) represents pure objects at the bottom

level. In addition, properties of a class, that is, attributes,

operations and associations, can be defined as intrinsic, which
means they are subject to deferred instantiation. Intrinsic prop-

erties require the specification of the intended classification

level. Associations are possible between classes at different

levels. For a comprehensive description of the FMMLx and its

metamodel see [8].

The FMMLx features a default concrete syntax, which

among other things includes specific representations of levels

and intrinsic properties. The core concepts of the FMMLx as

well as its default notation are shown in the diagram in Fig. 2.

2) The XModelerML : The XModelerML builds on the

XModeler and extends it by implementing the FMMLx and

by providing various specific components, such as an

FMMLx diagram editor, a workspace (console), an object

browser, a concrete syntax designer and a facility to design

custom tools. Since the XModelerML features a common rep-

resentation of models and programs, every FMMLx model

within the XModelerML is executable and allows for user

interaction. The XModelerML gives its users the choice of

three kinds of representing models: within the diagram ed-

itor, the object browser, or through a custom GUI. The

XModelerML can be downloaded from the LE4MM webpage

(https://le4mm.org).

A preliminary version of the modeling method that guides

the use of the FMMLx is described in [10]. Certain guidelines

of the method will be referred to below in the presentation of

the FMMLx solution.

III. REQUIREMENTS

The requirements used for the comparison fully comply with

the MULTI Collaboration Challenge to support the comparison

with further approaches but have been extended with four

additional requirements that are designed to highlight specific

differences between the two approaches. Table I shows all

of the challenge requirements including the four additional

requirements (No. 14 to 17). To better integrate them with

the existing requirements, we also generalized one of the

existing requirements slightly. More specifically, we changed

requirement R-11 so that it subsumes the original requirement

by stating that the S400 phone model has between 4 GB and

8 GB of RAM.

IV. DESCRIPTION OF THE SOLUTIONS

The presentations of the solutions follow a common struc-

ture that starts with a description of higher level classes that

capture general information about the domain and continues

with a description of more specific domain knowledge to

finally outline the state of objects representing particular ex-

emplars. While the presentations refrain from explaining trivial

design decisions and describing obvious class properties, they

provide the rationale for design decisions that are more de-

manding. As outlined above, the LML uses potencies, where

the FMMLx makes use of explicit levels to specify classes and

the instantiation levels of intrinsic properties. This difference

needs to be recognized when comparing the descriptions of

the two solutions.

670

supports

owns ownsCompanyAsOwner1FactoryAsModelSupporter1 DeviceModel2

Company1

 name1: String1

Factory0
Device0

 value1: Real
 sold1: Boolean
 price1: Real

MP_Device0:MobilePhoneModel

 IMEISuffix1: String
 minRAM1: Integer0

 amountSold()0: Integer
 maxRam1: Integer0
 ramSlots1: Integer0

 getIMEI()1: String1

 IMEIPrefix0: String0

HuaweiMPDevice0:HuaweiMPModel

 maxRAM1: Integer0

 amountSold()0: Integer
 minRam1: Integer0

 ramSlots1: Integer0

 IMEIPrefix0: String0

owns

owns

owns

owns

supports

supports

S400_0010:S400

 IMEISuffix0: String = '23648726'
 maxRAM0: Integer = 8
 value0: Real = 459.99
 sold0: Boolean = true
 minRam0: Integer = 4
 ramSlots0: Integer = 1
 price0: Real = 459.99
 getIMEI(): String

S400_0020:S400

 IMEISuffix0: String = '768475638'
 maxRAM0: Integer = 8
 value0: Real = 499.99
 sold0:Boolean = true
 minRam0: Integer = 4
 ramSlots0: Integer = 1
 price0: Real = 499.99
 getIMEI(): String

owns

device

device

10..*

10..*

MP_Factory0

HuaweiMP_Factory1

producer
device

ownerfactory

produces

factory

factory

produces

owner owner

owner
Huawei0:Company

 name: String = 'Huawei'

Factory1240:HuaweiMP_Factory

 currency: Currency = EUR

owner

deviceModel

deviceModel

owner

owner

factory

factory

Factory1240:HuaweiMPFactoryAsModelSupporter

 currency: Currency = EUR
 IMEIPrefix: String = '001'

Huawei0:CompanyAsOwner

factory

supportedModel

supportedModel

supportedModel

factory

factory

S4001:HuaweiMPModel

 maxRAM1: Integer0 = 8
 amountSold()0: Integer
 minRam1: Integer0 = 4
 ramSlots1: Integer0 = 1
 IMEIPrefix0: String = '4687'0

S5001:HuaweiMPModel

 maxRAM1: Integer0 = 16
 amountSold()0:Integer
 minRam1: Integer0 = 8
 ramSlots1: Integer0 = 2
 IMEIPrefix0: String = '4687'0

factory

deviceModel

MobilePhoneModel2

 minRAM2: Integer1

 amountSold()1: Integer
 maxRam2: Integer1
 ramSlots2: Integer1
 IMEIPrefix1: String1

MobilePhoneFactoryAsModelSupporter1
supportsfactory

supportedModel

O0

O1

O2

produces

HuaweiMPFactoryAsModelSupporter1

 IMEIPrefix1: String = '001'0 HuaweiMPModel2

producesproducer device

supports

factory

supportedModel

Currency = [USD,EUR]

RAMModule1

 size1: Integer

device

ramModule

RAMModule0

 size0: Integer = 4

RAMModule0

 size0: Integer = 8

device

ramModule

ramModule

device

Fig. 1. LML solution

671

TABLE I
LIST OF REQUIREMENTS

ID Description
R-1 A company has (a) a name, (b) owns factories, (c) owns device

models
R-2 Huawei is a (a) company that (b) owns Factory124 and (c) owns

mobile phone models S400 and S500
R-3 A factory (a) produces devices, (b) supports a list of device

models, (c) can only produce devices that conform to (are of)
supported device models

R-4 A device conforms to a device model
R-5 A device model captures what is universal about the devices it

describes
R-6 A mobile phone model (a) allows specific RAM size options

and (b) is a device model
R-7 A mobile phone device (a) conforms to a mobile phone model,

(b) has an IMEI and (c) has a RAM size
R-8 A mobile phone factory supports mobile phone models only
R-9 A Huawei mobile factory (a) supports Huawei mobile phone

models only, (b) keeps track of mobile phone devices it
produced, and (c) constrains the IMEI of the mobile phone
devices produced by the factory to start with ‘001’

R-10 Factory124 (a) is a factory, (b) supports Huawei S400 and
S500 mobile phone models, and (c) produced two S400 devices
(S400_001, S400_002)

R-11 S400 (a) is a mobile phone model and (b) has between 4GB
(default) and 8GB of RAM

R-12 S400_001 (a) is a mobile phone device, (b) conforms to
the S400 model, (c) has 4GBs of RAM, and (d) has
‘001468723648726’ as its IMEI

R-13 S400_002 (a) is a mobile phone device, (b) conforms to
the S400 model, (c) has 8GBs of RAM, and (d) has
‘0018768768475638’ as its IMEI

R-N14 Particular phones may vary in terms of their memory size.
Possible memory sizes are defined with the corresponding
phone model. The respective definition comprises the minimum
RAM size (which is the default) and the maximum memory
size, which can be accomplished by adding RAM modules that
are of certain sizes. The S500 phone model has a minimum
memory size of 8 GB (the default) and a maximum of 16 GB.

R-N15 For accounting purposes, every device has a certain value
which is expressed in the currency that was defined for the
corresponding factory.

R-N16 Top management expects the number of devices that were
produced per device model in a given year to be reported on
demand. It also expects the corresponding accumulated value
expressed in the currency defined for the corresponding factory.
Furthermore, for each factory, the average value of a device
across all device models is to be computed.

R-N17 All mobile phones are required to have a unique IMEI identifier
which is composed of an IMEI prefix that is common to a
particular mobile phone model, and an IMEI suffix that is
unique to each phone.

A. LML solution

The LML solution (Fig 1) consists of three levels which are

numbered from O0 (the most abstract level) to O2 (the most

concrete level). The level O0 hold the clabjects DeviceModel,

CompanyAsOwner, and FactoryAsModelSupporter.

The CompanyAsOwner clabject is connected to the

FactoryAsModelSupporter via the owns connection. The

supports connection connects the FactoryAsModelSupporter

and DeviceModel clabjects (R-3(b)). The CompanyAsOwner

is connected to the DeviceModel also via an owns

connection (R-1(b,c)). In order to specialize the supports

connection, so that only Huawei factories support Huawei

mobile phone models, the FactoryAsModelSupporter is

subclassed MobilePhoneFactoryAsModelSupporter and

HuaweiMPFactoryAsModelSupporter (with the attribute

IMEIPrefix (R-N17&R-9) set to ‘001’ and mutability ‘0’)

while the DeviceModel is subclassed with MobilePhoneModel

(with the attribute IMEIPrefix) and HuaweiMPModel

respectively. This takes care of requirement R-8.

The next level, O1, has Company with a name attribute and

connects to Factory via the owns connection (R-1(a)(b)).

Huawei as an instance of CompanyAsOwner owns the

Factory124, the S400, and the S500 device models (R-2). It

also accommodates the S400 and S500 device models (R-10).

To ensure that the model in the LML solution is well-formed

with respect to the dual-level representations of Huawei and

Factory124, two constraints are needed: Constraints 1 and 2

ensure that any CompanyAsOwner instance that is linked via

owns to a FactoryAsModelSupporter instance has a name-

corresponding pair of a Company instance that is linked via

owns to a Factory instance, and vice versa. The constraints

are very similar in nature, the only difference is the direction

for checking the existence-implication of the connections.

Checking them in both directions ensures equivalence between

the owns connections at level O1 and at level O2.

c o n t e x t Company (2 _2)
inv : l e t companyName = s e l f . # name# in C l a b j e c t → s e l e c t (

c l a b j e c t | c l a b j e c t . i sDeepOclTypeOf (CompanyAsOwner)) →
s e l e c t (companyAsOwner | companyAsOwner . # g e t Po t e n cy () # =
0) → s e l e c t (companyAsOwner | companyAsOwner . # name# =
companyName) . f a c t o r y → c o l l e c t (# name #) → i n c l u d e s A l l (
s e l f . f a c t o r y → c o l l e c t (# name #))

Constraint 1. Linking Company to CompanyAsOwner

c o n t e x t CompanyAsOwner (1 _1)
inv : l e t companyAsOwnerName = s e l f . # name# in C l a b j e c t →

s e l e c t (c l a b j e c t | c l a b j e c t . i sDeepOclTypeOf (Company)) →
s e l e c t (company | company . # g e t Po t e n cy () # = 0) → s e l e c t (
company | company . # name# = companyAsOwnerName) . f a c t o r y →

c o l l e c t (# name #) → i n c l u d e s A l l (s e l f . f a c t o r y → c o l l e c t
(# name #))

Constraint 2. Linking CompanyAsOwner to Company

The Factory clabject is connected to the Device clabject

via the produces relationship (R-3(a)).

Constraint 3 ensures that every factory only produces the

devices that conform to the device models that it supports

R-3(c). For every device produced by a particular O2-level

factory, its type must be among the models that are supported

by the O1-level representation (FactoryAsModelSupporter

instance) of that factory (with which it shares the same name).

c o n t e x t Fa c t o r y (2 , 2)
inv : l e t fac to ryName : S t r i n g = s e l f . # name# in

l e t f a c t o r yTypeRo l e = C l a b j e c t → s e l e c t (c l a b j e c t |
c l a b j e c t . i sDeepOclTypeOf (Fac to ryAsMode lSuppo r t e r) →
s e l e c t (c l a b j e c t | c l a b j e c t . # g e t Po t e n cy () # = 0) → s e l e c t (
c l a b j e c t | c l a b j e c t . # name# = fac to ryName) in

s e l f . d e v i c e → f o r A l l (d ev i c e | f a c t o r yTypeRo l e .
suppor t edMode l → i n c l u d e s (d e v i c e . # g e tD i r e c t T y p e s () # →

f i r s t ()))

Constraint 3. Factory supported devices

The Device clabject has subclasses which are indirect

instances of DeviceModel and, therefore, conform to device

models (R-4 and R-5). Constraint 4 returns the full IMEI string

of the phone (R-7). In that expression, we first navigate to the

direct type, the S400 phone model, and then to the factory

672

it is produced in where the attribute IMEIPrefix is located.

This value is then concatenated with the IMEIPrefif attribute

of the particular device model, which is, in turn, concatenated

with the IMEISuffix attribute.

c o n t e x t MP_Device : : getIMEI () : S t r i n g (2 , 2)
body : s e l f . # g e tD i r e c t Typ e () # . f a c t o r y . IMEIPre f i x . c o n c a t (

s e l f . # g e tD i r e c t Typ e () # . IMEIPre f i x . c o n c a t (s e l f .
IMEISuf f ix))

Constraint 4. Body constraint getIMEI()

Constraint 5 checks three things regarding requirements R-

N14&R-6. First, the number of RAM slots has to be greater or

equal to the number of RAM modules installed in the device.

The second part checks if the maxRam attribute value defined

for the model is greater or equal to the sum of the installed

RAM modules size. The last check is similar to the maxRAM

check but checks that the minRAM attribute value is smaller or

equal to the sum of the size of the installed RAM modules.

c o n t e x t MP_Device (2 _2)
inv : s e l f . RAMSlots >= ramModule → s i z e () and maxRam >=

ramModule . s i z e → sum () and minRam <= ramModule . s i z e →
sum ()

Constraint 5. Mobile Phone Model RAM option

The Factory124 is at both levels O1 and O2 because at

the former it supports device models, i.e., being an (indirect)

instance of FactoryAsModelSupporter, and at the latter being

the producer of the S400 device instances and itself being an

instance of Factory (R-10).

Constraint 6 is defined in MobilePhoneModel and calculates

the amount of sold devices. We, therefore, get all of the

instances of MobilePhoneModel which have a potency value

of ‘0’. These are the particular devices that can be sold to

customers. The second part of the select statement determines

if the actual device is sold or not. After the set of devices is

curated we just get the size of the collection and can return

the amount of sold devices (R-N16).

c o n t e x t MobilePhoneModel : : amountSold () : I n t e g e r (0 , 1)
body : s e l f . d e e p I n s t a n c e s () → s e l e c t (c l a b j e c t | c l a b j e c t
. # g e t Po t e n cy () # = 0 and c l a b j e c t . s o l d = t rue) → s i z e ()

Constraint 6. Body definition for the amount of sold devices computation

Constraint 7 establishes that all potent instances of

HuaweiMPModel must specialize HuaweiMPDevice so that their

instances are guaranteed to have the features specified in

HuaweiMPDevice.

c o n t e x t HuaweiMPModel (1 _1)
inv : i f s e l f . # g e t Po t e n cy () # = 0

then tr ue
e l s e s e l f . # ge tSupe rTypes () # → c o l l e c t (# name #)
→ i n c l u d e s (" HuaweiMPDevice ")

e n d i f

Constraint 7. Linking devices with models

The last level, O2, contains the instances of the S400 devices

that are produced by the Factory124, which is in turn owned

by the Huawei company (R-10 and R-12 and R-13).

The overarching user-defined enumeration type Currency is

tailored to the requirement R-N15.

B. FMMLx solution

The following presentation of the model developed with the

FMMLx is focussed on essential aspects. It leaves out a few

details that are not relevant for understanding and evaluating

the solution. The complete model can be downloaded at

https://le4mm.org/multi-23/. In addition, this page offers also

a screencast that demonstrates the use and execution of the

model within the XModelerML .

1) Focus on Generic Domain Knowledge: We follow the

general design principle that known knowledge should be

specified at the highest possible level within the scope of

a given project [10]. At first, we identified four concepts

at this level: a concept that represents companies of any

kind, a concept that comprises various kinds of devices, in

particular mobile devices and mobile phones, and a concept to

represent various kinds of RAM Modules. Furthermore, there

is a need for a concept that covers factories where devices of

any kind are produced, and, more specifically, mobile phones.

These concepts are represented in the classes GenericDevice,

GenericFactory, and RAM, all at L2, and the class Company at

L1.

The association owns between the classes Company at L1

and the GenericDevice serves to express that a company (at

L0) owns device models, represented by a class at L1 (R-

1). The GenericDevice represents general knowledge about

all kinds of device models and particular devices in the

domain. It defines the attribute imei as well as the intrinsic

constraint correctIMEI, both applied at L0. The constraint

checks whether a particular phone’s IMEI is unique R-N17.

c o n t e x t GenericDevice, L0
@Constraint correctIMEI

self.imei.hasPrefix(self.of().imeiPrefix) andthen self.
of().allInstances()→excluding(self)→ f o r A l l(other |
not self.imei.equals(other.imei))

fail
"This IMEI is not valid."

end

The class GenericDevice also includes the intrinsic attribute

value, which is specified with the class MonetaryValue, which

in turn uses the class Currency to represent amounts of money

(R-N15).

Since this knowledge applies to device models, the cor-

responding attributes are to be instantiated at L1. The in-

trinsic attribute dateProduced on the other hand serves the

description of particular device exemplars. Therefore, it is to

be instantiated only at L0. The attribute refCurrency of the

class Currency within the Company serves to define a reference

currency with every particular company R-N15. A company

may own device models and factories, which is represented by

the two associations owns and ownsFactory, where the latter is

instantiated with an object at L1 on the side of GenericDevice

R-1.

A further class at L2, RAM, serves the specification of RAM

types. The association hasRam between the classes RAM and

GenericMobileDevice, both at L2, serve to express that a

mobile phone model allows its instances to vary with respect

to memory size R-N14. Note that minRam in concretizations

of GenericMobileDevice defines the RAM size every phone

is equipped with as a default. The rules that restrict possible

configuration options are defined in the constraint properRAM:

673

c o n t e x t GenericMobileDevice, L0
@Constraint properRAM
self.getRAMs()→iterate(ram sum = 0 |

sum + ram.of().sizeGB) + self.of().minRAM <= self.of()
.maxRAM

fail
"Actual RAM must not exceed maximum RAM."

end

The diagram in Fig. 2 illustrates how the

XModelerML depicts the violation of a constraint within

an object.

Two more associations as well as three further constraints

are used to complete the level of generic domain knowledge.

The constraint correctCurrency of the class GenericDevice,

which applies to L1, checks whether the currency used for

expressing the default value of a phone defined with its model

(at L1) complies with the reference currency defined with the

corresponding factory R-N15.

The constraint properModel within the class

GenericFactory is to make sure that a factory may

produce only devices of device models that are supported by

this company. Hence, this constraint facilitates the definition

of the dependency of the association produces from the

association supports R-3.

2) Focus on Specific Domain Knowledge: The classes at

this level are concretized from classes at the generic domain

knowledge level. Hence, the upper-level classes can be re-

garded as the specification of a DSML for modeling device

models within a manufacturing context.

Device models are described as concretizations of the class

GenericDeviceModel (R-4). Requirement R-6 is accounted for

by linking a specific mobile phone model to the RAM module

types, it may be extended by. Constraint properProduction

of the class MobilePhoneFactory is to ensure that a mobile

phone factory must produce mobile phones only R-8. The

value of a phone changes with its memory configuration. The

totalValue() defined with the class GenericMobileDevice

computes this value for each exemplar.

The phone model S400 is represented by the class S400. Its

default memory size of 4 GB is represented in the slot value

of the attribute minRAM. Possible extensions of the memory

size of its instances R-11, R-N14 are represented by the

association hasRAM that allows creating links between an object

representing a particular S400 device and RAM modules of

any size, and the constraint ProperRAM that was already defined

with GenericDeviceModel.

The class ReportManager serves the implementation of op-

erations that compute reports for managerial purposes R-N16.

The operation averageDeviceValue, for instance, calculates

the average value of a device per device model and year:

c o n t e x t ReportManager, L0
@Operation avgDeviceValue():Auxiliary::MonetaryValue

try
l e t factory = Factories::GenericFactory.allInstances()
→collect(F |

F.allInstances())→flatten→select(f |
f.name.toString().equals(self.

factoryInFocus)).asSeq().at(0) then
result = Auxiliary::MonetaryValue(0,Auxiliary::

Currency("NUL","NUL",1000.0));
devices = factory.getProdDevices()→select(device |

device.dateProduced.toString().
subString(7,11).equals(self.queryYear.toString()))

in @For device in devices do
result := device.totalValue().add(result)

end;
i f devices.size() = 0
then "DIV/0"
e l s e result.mul(1 / devices.size())
end

end
catch(e)

"An error occured: " + e.message
end

end

Year, selected device model, and factory are represented by

the slots related to the attributes queryYear, deviceInFocus,

factoryInFocus. The XModelerML allows the modification of

slots by double-clicking them. Since device and factory are

represented as strings, two operations, changeDeviceModel

and changeFactory were added to make sure that the strings

entered by a user are valid identifiers of device and factory

objects.

3) Focus on Particular Exemplars: The classes introduced

so far constitute a complete conceptual model in the sense that

they specify all conceptual knowledge. The further instantia-

tion of this model serves as the representation of particular

instances.

The company Huawei is represented by the object Huawei,

which, together with the links owns to S400 and S500 and

the link owns to Factory124 satisfies R-2. The navigable

links ownsFactory and produces enable the company to

“keep track of mobile phones it produced” R-9. The con-

straint properModel defined with the generic domain class

GenericFactory makes sure that the company produces only

devices, whose models it owns R-9.

The particular phones described in R-12 and R-13 are

represented by the objects s400_001 and s400_002. The con-

straint properIMEI defined with the classMobilePhoneFactory

ensures that IMEIs of these phones are valid R-N17.

C. Comparison of Solutions

Table II gives a comparative overview of both solutions. For

each of the two solutions, an “s” indicates that the respective

requirement is satisfied. Those cases where both solutions are

characterized by a largely corresponding approach are indi-

cated by “corresponding” in the comment column. Different

approaches are marked as “different”. Note, to compare both

solutions in Fig. 1 and Fig. 2, it is required to “translate”

potencies into explicit classes in the FMMLx solution, and vice

versa.

V. DISCUSSION

In this section, we compare the two approaches by dis-

cussing their difference and similarities at various levels of

abstraction and detail. As requested in the Challenge, which

calls for an emphasis on fundamental issues, we start by

discussing underlying principles and language architectures

and gradually introduce more concrete concerns related to the

specific ways the approaches model the domain and fulfill the

requirements.

674

hasRAMs

hasRAMs

owns

produces

supports

supports

produces

ownsFactory

owns

hasRAMs

0..10..*

00 ownsFactory

1 0..*

0 1owns

0..1

0..4

0

0
hasRAMs

1
1..*0

0

produces

1..*
1..*

0
1

supports

^Company^
0 Huawei

compName = Huawei
refCurrency = Currency<EUR>

^MobilePhoneFactory^
0 Factory124

address = Beijing, China
imeiFactoryPrefix = 001
refCurrency = Currency<EUR>

^GenericMobileDevice^
1 S400

dateProduced: Date[1] (from GenericDevice)0
imei: String[1] (from GenericMobileDevice)0

0 totalRAM(): Element (from GenericMobileDevice)
0 totalValue(): Element (from GenericMobileDevice)

imeiModelPrefix = 4687
maxRAM = 8
minRAM = 4
value = 248.34 EUR

^RAM2^
0 rAM21

^FMMLx::MetaClass^
1 ReportManager

deviceModelInFocus: String[1]0
factoryInFocus: String[1]0
queryYear: Integer[1]0

0 accumulatedValue(): MonetaryValue
0 avgDeviceValue(): MonetaryValue
0 changeDeviceModel(): Element
0 changeFactory(): Element
0 numberOfModelsProduced(): Integer

^S400^
0 s400_002

dateProduced = 29 Mar 2023
imei = 001468768475638

totalRAM()-> 8
totalValue()-> 263.24 EUR

^S400^
0 s400_001

dateProduced = 03 Sep 2023
imei = 001468723648726

totalRAM()-> 10
totalValue()-> 274.23 EUR

^FMMLx::MetaClass^
2 RAM

clockRate: Integer[1]1
sizeGB: Integer[1]1
value: MonetaryValue[1]1

^RAM^
1 RAM4

clockRate = 2935
sizeGB = 4
value = 14.90 EUR

^FMMLx::MetaClass^
2 GenericFactory

address: String[1]0
refCurrency: Currency[1]0

properModel0

^RAM^
1 RAM2

clockRate = 3290
sizeGB = 2
value = 10.99 EUR

^FMMLx::MetaClass^
2 GenericDevice

value: MonetaryValue[1]1
dateProduced: Date[1]0

correctCurrency1
correctDeviceCurr0

^RAM4^
0 rAM41

^GenericFactory^
1 MobilePhoneFactory

imeiFactoryPrefix: String[1]0
address: String[1] (from GenericFactory)0
refCurrency: Currency[1] (from GenericFactory)0

properProduction0
properSupport0

^GenericMobileDevice^
1 S500

dateProduced: Date[1] (from GenericDevice)0
imei: String[1] (from GenericMobileDevice)0

0 totalRAM(): Element (from GenericMobileDevice)
0 totalValue(): Element (from GenericMobileDevice)

imeiModelPrefix = 3576
maxRAM = 16
minRAM = 8
value = 285.80 EUR

^RAM4^
0 rAM42

^FMMLx::MetaClass^
2 GenericMobileDevice

imeiModelPrefix: String[1]1
maxRAM: Integer[1]1
minRAM: Integer[1]1
imei: String[1]0
value: MonetaryValue[1] (from GenericDevice)1
dateProduced: Date[1] (from GenericDevice)0

0 totalRAM(): Element
0 totalValue(): Element

correctIMEI0
properRAM0

^ReportManager^
0 reportManager1

deviceModelInFocus = S400
factoryInFocus = Factory124
queryYear = 2023

accumulatedValue()-> 537.47 EUR
avgDeviceValue()-> 268.74 EUR
numberOfModelsProduced()-> 2

^FMMLx::MetaClass^
1 Company

compName: String[1]0
refCurrency: Currency[1]0

Attributes

Constraints

SpecializationInstantiation Level

Level
Class name

meta-class name

Association

Association name
Multiplicity

Operation

Slot Values

Operation Value

Link

Derived Properties
in gray

Link name

Intrinsic Attribute

Element violating
constraint in light red

Constraint
Report

(runs thru in tool)

Arrows indicate
navigability

Actual RAM must not exceed m

Fig. 2. FMMLx solution

A. Language Architecture

At first sight, the underlying architectures of the LML

and the FMMLx appear to be fundamentally different. The

LML architecture is based on the OCA which explic-

itly distinguishes ontological versus linguistic classification

and organizes them into separate dimensions, while the

FMMLx architecture is based on a “golden braid” (meta)model

stack. However, both approaches fulfill the same basic purpose

of building the modeling features around a small, reflective

core from which all model elements are derived. In the case

of LML, this is achieved by orthogonality (i.e., by placing

the common core in a linguistic metamodel that “spans” all

domain model elements) while in FMMLx this is achieved

by meta-circularity (i.e., placing the common core in a self-

describing (meta)model at the top of a model stack from which

all domain model elements are derived).

Although the FMMLx core does not explicitly refer to

ontology, therefore, it follows a common idea of ontologies

in philosophy, that is, it describes the basic concepts used

to describe all things – and classes of things – in the world

675

ID LML FMMLx Comment
R-1 s s different LML uses classes at more than one level.
R-2 s s different – while the classHuawei is represented twice in the LML solution as a consequence of its inherent strictness

constraint, it is represented without redundancy in the FMMLx solution. The LML solution uses a constraint to connect
them because they represent the same real-world entity.

R-3 s s different – while both approaches correspond with respect to (a) and (b), they are different with respect to (c). The
LML makes use of multiple different associations that are all named “supports” and “produces” between different
classes, where the FMMLx solution requires only the intrinsic associations supports and produces between the
two classes GenericFactory and GenericDevice at L2 that is “instantiated” into a link with the same name
which connects the object Huawei at L0 and the classes S400 and S500 at L1. The LML solution needs more
associations to represent supports relationships at lower levels but needs fewer constraints because this language
concept allows to specialize the supports relationship. Different from the FMMLx , the notation of the LML does
not clearly distinguish between associations and links. To express the fact that only those devices can be produced by
a factory that supports the corresponding device model, both approaches make use of constraints.

R-4 s s different LML uses classes at more than one level.
R-5 s s different – while both solutions define the requested properties in one class each (MobilePhoneModel and

GenericMobileDevice respectively), the LML solution repeats the corresponding specification in the lower level
classes MP_Device and HuaweiMPDevice. Device models describe devices by being the types of the latter.

R-6 s s corresponding – both approaches define RAM size options through an association with a class representing RAMs.
The field representing the incarnations of attributes like minRAM are shown together with the datatype in the LML
solution, which is not the case with the FMMLx solution.

R-7 s s different – both approaches define the required properties. However, these are represented in one class only in the
FMMLx solution (GenericMobile at L2), where they are distributed/repeated in four different classes at two levels
in the LML solution. Also, the specific RAM size of a device is computed by the operation totalRAM defined in the
class GenericMobileDevice.

R-8 s s different – both solutions are built on associations that express support relationships between factories and
mobile phone models. The FMMLx solution does that only once with the association supports between
the classes GenericFactory and GenericDevice. The constraint properProduction in the class
MobilePhoneFactory serves to make sure that a particular mobile phone factory may produce mobile phones
only. The LML solution uses multiple classes for this purpose but does without an additional constraint (3)

R-9 s s different – within the FMMLx solution, the constraint properSupport ensures (a), which is not required by the
LML solution (b) the FMMLx solution introduces a specific class for that purpose (ReportManager), and uses an
attribute to define the IMEI prefix. The LML solution defined IMEIPrefix in Factory124

R-10 s s different – while there is only one occurrence of the factory object in the FMMLx solution, the LML solution requires
two.

R-11 s s corresponding
R-12 s s corresponding
R-13 s s corresponding
R-N14 s s corresponding – see also R-6
R-N15 s s different – while the FMMLx solution defines the value attribute with the class GenericDevice at L2, the LML

solution uses the class Device for that purpose. Also, the FMMLx solution uses a specific class, MonetaryValue
to represent values, whereas the LML solution uses the datatype Real only.

R-N16 s s different – while the FMMLx solution introduces a dedicated management class (ReportManager) here, where the
LML solution defined the method amountSold() in MobilePhoneModel at level O0 which when invoked returns
the amount of devices sold.

R-N17 s s corresponding – both approaches use definitions of prefixes for the Huawei company and for mobile phone models.
The LML solution uses the getIMEI method to return the concatenated string of IMEIPrefix and IMEISuffix

TABLE II
COMPARISON OF THE TWO APPROACHES WITH RESPECT TO REQUIREMENTS

(e.g., [4], [12]). These basic concepts are applied to describe

any class of things (concepts). Accordingly, all classes in a

FMMLx model inherit from the metaclass Class, which de-

fines generic class properties, attributes as well as associations,

and, to cover functional aspects, operations. To specify and

implement operations as well as constraints, it makes use of

the XOCL. Constraints specified with the XOCL may span

multiple levels [14].

The linguistic metamodel of the LML defines clabjects

as an abstraction over classes and objects, XCore, and

the FMMLx respectively distinguish between the metaclasses

Class and Object. This distinction is used to separately define

characteristic properties of objects (with each class being an

object), e.g., that they have state or can execute methods.

B. Core Modeling Features

Again, the differences between the core modeling features

used to express models are largely superficial and are rooted

in terminology rather than semantics. Both approaches are ori-

ented towards the well-known UML syntax (both abstract and

concrete) to represent the entities, relationships, and properties

existing in the domain of interest. Whereas the LML favors the

term “clabject” to emphasize the fact that entities in a domain

are represented in a way that unifies their type and instances

roles, FMMLx favors the more traditional terms of “class” and

“object”. However, since the core FMMLx metamodel declares

all classes to also be objects, the effect is the same. All classes

in FMMLx correspond to clabjects, although as with LML

some may only play the role of an instance while others may

only play the role of a type.

676

In terms of modeling relationships, both languages use

an approach that essentially unifies the notion of associa-

tions/links from the UML. The only significant difference is

that LML allows such connections to enter into inheritance

relationships while FMMLx defines specialization as a con-

cept on its own. Both languages essentially use a similar

notation to represent attributes and slots. However, while the

FMMLx retains the separation between attributes or slots (i.e.,

a property is represented either as an attribute or a slot)

LML uses the dual field approach [3], where properties can

sometimes be both.

Finally, both languages support the specification of opera-

tions. For this purpose, the FMMLx uses the XOCL, which is a

complete programming language. DOCL is not a programming

language (or action language in MDD terminology) but can

describe the behavior of operations and execute them via

“body” constraint expressions.

C. Levels

One of the aspects of MLM where FMMLx and LML

differ more significantly is how they define and relate levels.

LML takes a more traditional (i.e. UML-like) approach by

defining levels in terms of the classic “instance-of” relation-

ship between classes and objects (as found in the UML and

object-oriented programming languages). This also means that

LML enforces a traditional separation between classification

(i.e., instance-of relationships) and specialization (ie., subclass

relationships). In contrast, FMMLx supports a more generic

and flexible approach for defining levels, referred to as con-

cretization, which combines instantiation and inheritance (not:

specialization). In LML, therefore, the clabjects at one level

are instances of the clabjects at the level above, while in

FMMLx they are concretizations of the level above. Special-

ization is available in the FMMLx and restricted to classes at

the same level.

As well as defining levels in different ways, the two

languages also differ slightly in the way they allow clab-

jects at different levels to be related. Again, LML takes the

more traditional, UML-like approach whereby all instances

of a clabject must reside at the immediate level below, all

specialization relationships must be confined to a single level,

and no connections (i.e., associations/links) can cross levels.

FMMLx also adopts the first two rules (but for concretizations

rather than instances in the first case), but allows connections

to cross level boundaries.

D. Deep Characterisation

Another area where the two approaches differ somewhat

is in their approaches to deep characterization – that is,

the ability for clabjects to control not only the features of

their immediate instances/concretizations but also of deeper

instances/concretizations created by further refinement steps.

LML primarily uses three vitality properties associated with

model elements to perform deep characterization - potency,

which governs how many levels below a clabject may have

instances, durability, which governs over how many instantia-

tion steps a clabject must have a slot/attribute (i.e., a field) and

mutability, which governs over how many levels the value of a

field can vary. In contrast, FMMLx primarily uses the notion of

“intrinsicness” to perform deep characterization. Instrinsicness

essentially defines the level at which a property is to be

instantiated, or, in the case of an operation, executed.

E. Characterisation Proximity

The final aspect of MLM where LML and FMMLx differ

is in their approach to what we here call “characterization

proximity”. Although the difference is simple to understand,

it is the origin of probably the largest visual difference between

LML and FMMLx models which is the number of model

elements they contain.

LML follows a proximate characterization strategy in

which the required properties of the elements at a particular

level (except the top level) are “fully” characterized by the

elements above. This means that in order to know what

constraints apply to model elements at a level x, modelers

only need to look at level x+1. This in turn means that it is

not necessary to deliver the whole multi-level model whenever

it is necessary to provide stakeholders with a characterized

ontological level of a domain model. However, since the

properties of level x+1 may well be, and often are, controlled

by level x+2, and so on, this means that multi-level models

employing proximate characterization often contain redundant

information.

FMMLx , on the other hand, follows a concise charac-
terization strategy where only the minimal necessary model

elements are included in a multi-level model to characterize

all levels. All levels (except the top) are fully characterized in

FMMLx , but not necessarily at the level immediately above.

If users of the FMMLx want to save themselves the trouble

of navigating to the upper-level ancestors of the class they

focus on, the XModelerML provides filters that allow fading in

properties that were defined further up the hierarchy. In the

diagram, these are displayed in grey and supplemented with

specific details.

Table III shows the impact of these different approaches

to characterization proximity on the size of the two solutions

in terms of the number of model elements. This shows that

the LML model includes far more classes/clabjects, attributes,

associations, and slot values above the bottom level because

of the redundancy needed to achieve proximate classification.

FMMLx requires far fewer model elements because much

more of the domain knowledge can be abstracted to higher

levels and described only once. The table also shows that

the LML and FMMLx solutions require the same number of

constraints, although this involves making use of the lan-

guage feature that allows for specializing connections (see the

supports connection).

F. Productivity and Comprehensibility

We were not able to determine which approach offers

advantages in terms of modeling productivity. However, given

677

TABLE III
SELECTED METRICS

Description LML FMMLx

no. of classes 19 11
no. of attributes 23 15
no. of slot values above L0 12 9
no. of associations 12 5
no. of constraints 7 7

the current level of modeling support provided by each tool,

we suspect that the creation of LML models usually requires

greater effort. This is because of the redundant model elements

required by LML to support proximate classification. The

XModelerML on the other hand can insert some of this infor-

mation automatically if desired (e.g., the light grey attributes

in GeneralMobileDeive S400 and S500) if a user desires

proximate classification, or can leave it out if a user desires

concise classification.

The relative understandability of LML and FMMLx models

is likely to depend on the prior background of the modeler.

Modelers who are familiar with the UML are likely to find

LML models easier to understand, at least initially, since apart

from potency, the level content in an LML model follows the

rules a UML modeler is likely to expect. However, a person

whose perspective is not confined to the UML view of the

world may find FMMLx models easier to understand since they

are usually concise and involve fewer new modeling constructs

like the vitality properties.

G. Executability and Behaviour Description

One of the largest differences between the LML

and FMMLx modeling environments (i.e., Melanee and

XModelerML) is their support for executability and be-

havior specification. XModelerML is actually a fully blown

programming environment, so all the code written in the

FMMLx solution is executable. In the XModelerML , there is

no distinction between programs and models, they share the

same representation. This is not the case with Melanee which

does not provide the same support for execution. Like OCL the

DOCL constraint language used in the LML solution is mostly

declarative and DOCL constraints cannot make any changes to

the instance of the classes to which they are applied. Neverthe-

less, using OCL-like “body” and “derive” specifications it is

possible to define the behavior that operations are required to

have (and execute them) as well as setting values to attributes.

The implementations of the specified behavior are deferred to

other technologies, however, such as programming language.

VI. CONCLUSION

Working on the collaborative challenge was beneficial for

both participating groups. Even though both groups were

aware of each other’s approaches, cooperation during the

creation of the solutions led to a number of questions that

could only be clarified in joint discussions. On the one hand,

this resulted in new insights for both groups, and on the other

hand, it led to suggestions concerning the further development

of both approaches. In the case of FMMLx the work on

the challenge has indicated the need for two complementary

language concepts. For example, LML’s ability to represent

relationships between associations/links has proved so useful

that it is planned to extend FMMLx with a corresponding

concept. In addition, it has become apparent in the discussions

that, even if they are largely equivalent to explicit levels,

potencies offer advantages in some cases. Therefore, it is

being considered to offer potencies in FMMLx as well. The

collaboration has also led to a desire to promote the inte-

gration of the languages. To this end, we will consider two

alternatives: the specification of an exchange format based on

a common metamodel, and the implementation of the LML in

the XModelerML , which would then allow us to work on one

common multi-level model using two different languages.

REFERENCES

[1] Colin Atkinson. Meta-modeling for distributed object environments. In
Enterprise Distributed Object Computing, pages 90–101. IEEE, October
1997.

[2] Colin Atkinson and Ralph Gerbig. Flexible deep modeling with melanee.
In Modellierung 2016 - Workshopband, volume 255, pages 117–121,
Bonn, 2016. Köllen.

[3] Colin Atkinson and Thomas Kühne. The Essence of Multilevel Meta-
modeling. In Martin Gogolla and Cris Kobryn, editors, UML 2001 —
The Unified Modeling Language. Modeling Languages, Concepts, and
Tools, Lecture Notes in Computer Science, pages 19–33. Springer Berlin
Heidelberg, 2001.

[4] Mario Bunge. Treatise on Basic Philosophy: Volume 3: Ontology I: The
Furniture of the World. Reidel, Dordrecht, 1977.

[5] Tony Clark, Paul Sammut, and James Willans. Applied Metamodelling:
A Foundation for Language Driven Development. Ceteva, 2 edition,
2008.

[6] Tony Clark, Paul Sammut, and James Willans. Superlanguages: devel-
oping languages and applications with XMF. Ceteva, 2008.

[7] Juan de Lara and Esther Guerra. Deep meta-modelling with metadepth.
In Jan Vitek, editor, Objects, Models, Components, Patterns, pages 1–20,
Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

[8] Ulrich Frank. The flexible modelling and execution language (FMMLx)
– version 2.0: Analysis of requirements and technical terminology.

[9] Ulrich Frank. Multilevel modeling: Toward a new paradigm of concep-
tual modeling and information systems design. Business and Information
Systems Engineering, 6(6):319–337, 2014.

[10] Ulrich Frank. Prolegomena of a multi-level modeling method illustrated
with the FMMLx . In Proceedings of the 24th ACM/IEEE International
Conference on Modell Driven Engineering Languages and Systems:
Companion Proceedings. IEEE, 2021.

[11] Ulrich Frank and Tony Clark. Language engineering for multi-level
modeling (le4mm): A long-term project to promote the integrated devel-
opment of languages, models and code. In Jaime Font, Lorena Arcega,
José-Fabián Reyes-Román, and Giovanni Giachetti, editors, Proceedings
of the Research Projects Exhibition at the 35th International Conference
on Advanced Information Systems Engineering (CAiSE 2023), CEUR,
pages 97–104. CEUR-WS.org, 2023.

[12] Reinhardt Grossmann. The Categorical Structure of the World. Indiana
University Press, Bloomington, 1983.

[13] A. Lange and C. Atkinson. On the rules for inheritance in lml.
In 2019 ACM/IEEE 22nd International Conference on Model Driven
Engineering Languages and Systems Companion (MODELS-C), pages
113–118, Los Alamitos, CA, USA, sep 2019. IEEE Computer Society.

[14] Tony Clark and Ulrich Frank. Multi-level constraints. In Regina
Hebig and Thorsten Berger, editors, Proceedings of MODELS 2018
Workshops co-located with ACM/IEEE 21st International Conference on
Model Driven Engineering Languages and Systems (MODELS 2018),
Copenhagen, Denmark, October, 14, 2018, volume 2245 of CEUR
Workshop Proceedings, pages 103–117. CEUR-WS.org, 2018.

678

